综述

超级电容池及其2018年基础研究回眸

  • 陈政
展开
  • 1. 英国诺丁汉大学化学与环境工程系, 诺丁汉 NG7 2RD;
    2. 宁波诺丁汉大学化学与环境工程系, 宁波 315100
陈政,教授,研究方向为电化学工艺,电子信箱:George.Chen@nottingham.ac.uk

收稿日期: 2019-01-11

  修回日期: 2019-01-27

  网络出版日期: 2019-02-27

基金资助

浙江省千人计划项目,宁波市3315计划项目,宁波科技计划项目(2014A35001-1)

Supercapattery and its fundamental research in 2018

  • CHEN George Zheng
Expand
  • 1. Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK;
    2. Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China

Received date: 2019-01-11

  Revised date: 2019-01-27

  Online published: 2019-02-27

摘要

介绍新型电化学储能器件“超级电容池”并回顾其2018年的基础研究进展。作为蓄电池和超级电容器的内在结合型电化学储能器件,超级电容池较好地结合了前者高储能密度和后者可快速充放电、长循环寿命的特性,可以在移动和固定储能应用中发挥更大作用。

本文引用格式

陈政 . 超级电容池及其2018年基础研究回眸[J]. 科技导报, 2019 , 37(3) : 102 -108 . DOI: 10.3981/j.issn.1000-7857.2019.03.015

Abstract

The new electrochemical energy storage device, supercapattery, is introduced as a hybrid of supercapacitor and rechargeable battery. Selected research publications in 2018 on supercapattery and related topics are reviewed with critical analysis and comments. It is anticipated that supercapattery can and will play an important role in both mobile and stationary applications involving energy storage.

参考文献

[1] Chen G Z. Supercapacitor and supercapattery as emerging electrochemical energy stores[J]. International Materials Review, 2017, 62(4):173-202.
[2] Ding J, Hu W B, Paek E, et al. Review of hybrid ion capacitors:From aqueous to lithium to sodium[J]. Chemical Reviews, 2018, 118:6457-6498.
[3] Akinwolemiwa B, Chen G Z. Fundamental consideration for electrochemical engineering of supercapattery[J]. Journal of Brazilian Chemical Society, 2018, 29(5):960-972.
[4] Arie A A, Kristianto H, Halim M, et al. Preparation of orange peel based activated carbons using chemical activation and surface modification method as electrode's materials for lithium ion capacitor[J]. Science of Advanced Materials, 2018, 10(1):119-123.
[5] Vadivazhagan M, Parameswaran P, Mani U, et al. Waste-driven bio-carbon electrode material for na-ion storage applications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):13915-13923.
[6] Li S H, Chen J W, Gong X F, et al. A nonpresodiate sodiumion capacitor with high performance[J]. Small, 2018, 14(50), doi:10.1002/smll.201804035.
[7] Hirota N, Okuno K, Majima M, et al. High-performance lithium-ion capacitor composed of electrodes with porous three-dimensional current collector and bis(fluorosulfonyl) imide-based ionic liquid electrolyte[J]. Electrochimica Acta, 2018, 276:125-133.
[8] Surendran S, Shanmugapriya S, Sivanantham A, et al. Electrospun carbon nanofibers encapsulated with NiCoP:A multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions[J]. Advanced Energy Materials, 2018, 8(4), doi:10.1002/aenm.201800555.
[9] Akinwolemiwa B, Wei C H, Yang Q H, et al. Optimal utilisation of combined double layer and Nernstian charging of activated carbon 1 electrodes in aqueous halide supercapattery through capacitance unequalisation[J]. Journal of the Electrochemical Society, 2018, 165(16):A4067-A4076.
文章导航

/