综述

四足机器人刚柔耦合仿生脊柱研究进展

  • 雷静桃 ,
  • 张悦文 ,
  • 饶进军
展开
  • 上海大学机电工程与自动化学院, 上海 200444
雷静桃,教授,研究方向为仿生机器人,电子信箱:jtlei2000@163.com;张悦文(共同第一作者),硕士研究生,研究方向为仿生机器人,电子信箱:17854252082@163.com

收稿日期: 2019-02-20

  修回日期: 2019-04-10

  网络出版日期: 2020-04-01

基金资助

国家自然科学基金项目(51775323,51375289)

Research progress of rigid-flexible coupling bionic spine of quadruped robot

  • LEI Jingtao ,
  • ZHANG Yuewen ,
  • RAO Jinjun
Expand
  • School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

Received date: 2019-02-20

  Revised date: 2019-04-10

  Online published: 2020-04-01

摘要

四足机器人的仿生脊柱对提高机器人非结构化环境的机动性和稳定性具有重要作用。系统分析了国内外四足机器人仿生脊柱的研究现状,将仿生脊柱分为局部柔顺脊柱和整体柔顺脊柱两类,对比分析不同四足机器人仿生脊柱的结构特点,提出未来发展趋势。四足机器人仿生脊柱从传统的整体刚性结构向刚柔耦合结构方向发展,具有类生物变刚度、可柔顺弯曲特性的新型仿生脊柱突破仿生驱动、神经元精细控制等关键技术,向高效能量转换的类生物系统方向发展。

本文引用格式

雷静桃 , 张悦文 , 饶进军 . 四足机器人刚柔耦合仿生脊柱研究进展[J]. 科技导报, 2020 , 38(2) : 35 -49 . DOI: 10.3981/j.issn.1000-7857.2020.02.005

Abstract

The bionic spine of a quadruped robot plays an important role in improving the mobility and the stability of the robot in an unstructured environment. This paper reviews the research progress of the bionic spine of quadruped robots at home and abroad. The bionic spine is divided into two categories in the bionics:the local flexible spine and the overall flexible spine. The structural characteristics of different bionic spines of the quadruped robot are compared and the development trends are discussed. The bionic spine of quadruped robots is developed from the traditional rigid structure to the rigid-flexible coupling structure. The new bionic spine has a bio-variable stiffness with flexible bending, and some key technologies such as the bionic driving and the neuron fine control need to be developed. It is developed toward a biological system for high-efficiency energyconversion.

参考文献

[1] Hibert E. "Cheetahs on the Edge", a short movie by Greg Wilson[EB/OL]. (2013-04-26)[2019-02-12]. http://www.everseradio.com/cheetahs-on-the-edge/.
[2] Schilling N, Hackert R. Sagittal spine movements of small therian mammals during asymmetrical gaits[J]. The Journal of Experimental Biology, 2006, 209(10):3925-3939.
[3] Hackert R, Schilling N, Fischer M S. Mechanical self-stabilization, a working hypothesis for the study of the evolution of body proportions in terrestrial mammals[J]. Comptes Rendus Palevol, 2006, 5(3/4):541-549.
[4] Park S H, Kim D S, Lee Y J. Discontinuous spinning gait of a quadruped walking robot with waist-joint[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2005:2744-2749.
[5] Park S, Lee Y J. Discontinuous zigzag gait planning of a quadruped walking robot with a waist-joint[J]. Advanced Robotics, 2007, 21(1):143-164.
[6] Hutter M, Gehring C, Höpflinger M A, et al. Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped[J]. IEEE Transactions on Robotics, 2014, 30(6):1427-1440.
[7] Seok S, Wang A, Michael Chuah M Y, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT Cheetah Robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3):1117-1129.
[8] Hyun D J, Seok S, Lee J, et al. High speed trot-running:Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah[J]. International Journal of Robotics Research, 2014, 33(11):1417-1445.
[9] 董长生. 家畜解剖学[M]. 北京:中国农业出版社, 2001.
[10] Galbusera F, Wilke H J. Biomechanics of the Spine[M]. Pittsburgh:Academic Press, 2018:279-296.
[11] Reitmaier S, Schmidt H, Ihler R, et al. Preliminary investigations on intradiscal pressures during daily activities:An in vivo study using the merino sheep[J]. PLoS One, 2013, 8(7):e69610.
[12] Buttermann G R, Beaubien B P, Saeger L C. Mature runt cow lumbar intradiscal pressures and motion segment biomechanics[J]. Spine, 2009, 9(2):105-114.
[13] Wilke H J, Krischak S, Claes L. Biomechanical comparison of calf and human spines[J]. Journal of Orthopaedic Research, 1996, 14(3):500-503.
[14] Alini M, Eisenstein S M, Ito K, et al. Are animal models useful for studying human disc disorders/degeneration[J]. European Spine Journal, 2008, 17(1):2-19.
[15] Sheng S R, Xu H Z, Wang Y L, et al. Comparison of cervical spine anatomy in calves, pigs and humans[J]. PLoS One, 2016, 11(2):1-10.
[16] Reid J E, Meakin J R, Robins S P, et al. Sheep lumbar intervertebral discs as models for human discs[J]. Clinical Biomechanics, 2002, 17(4):312-314.
[17] Gambaryan P P. How mammals run[M]. Jerusalem:Krter Press, 1974.
[18] Gary J. How animals move[M]. London:Cambridge University Press, 1960.
[19] Schilling N, Hackert R. Sagittal spine movements of small therian mammals during asymmetrical gaits[J]. The Journal of Experimental Biology, 2006, 209(10):3925-3939.
[20] Miki K, Tsujita K. A study of the effect of structural damping on gait stability in quadrupedal locomotion using a musculoskeletal robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway NJ:IEEE, 2012:1976-1981.
[21] Kawasaki R, Sato R, Kazama E, et al. Development of a flexible coupled spine mechanism for a small quadruped robot[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2016:71-76.
[22] 张秀丽, 梁艳. 一种仿婴儿欠自由度四足爬行机器人[J]. 机器人, 2016, 38(4):458-466.
[23] 李冬冬. 柔顺四足机器人的设计与控制研究[D]. 北京:北京交通大学, 2012.
[24] Brooke M H. Investigation of an articulated spine in a quadruped robotic system[D]. Michigan:University of Michigan, 2011.
[25] 董立涛. 含脊柱关节四足机器人仿生结构设计及跳跃运动仿真研究[D]. 哈尔滨:哈尔滨工程大学, 2014.
[26] Lewis M A. Self-organization of locomotory controllers in robots and animals[D]. Los Angeles:University of Southern California, 1996.
[27] Berns K, Ilg W, Deck M, et al. Mechanical construction and computer architecture of the four-legged walking machine BISAM[J]. IEEE/ASME Transactions on mechatronics, 1999, 24(1):32-38.
[28] Ishii H, Masuda Y, Miyagishima S, et al. Design and development of biomimetic quadruped robot for behavior of rats and mice[C]//31st Annual International Conference of the IEEE EMBS. Piscataway NJ:IEEE, 2009:7192-7195.
[29] Narioka K, Rosendo A, Sproewitz A, et al. Development of a minimalistic pneumatic quadruped robot for fast locomotion[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2012:307-311.
[30] Jason D. Boston dynamics robot Cheetah outruns swiftest human[EB/OL]. (2012-09-10)[2019-03-02]. https://singularityhub.com/2012/09/10/boston-dynamics-robotcheetah-outruns-swiftest-human/.
[31] 吴海波. 具有可变刚度的四足机器人仿生脊柱设计与应用研究[D]. 北京:北京交通大学, 2016.
[32] Khoramshahi M, Sprowitz A, Tuleu A, et al. Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2013:3329-3334.
[33] Weinmeister K, Eckert P, Witte H, et al. Cheetah-cubS:Steering of a quadruped robot using trunk motion[C]//IEEE International Symposium on Safety. Piscataway, NJ:IEEE, 2016:3021-3026.
[34] 张群. 含脊柱关节驱动机构四足机器人跳跃机理研究[D]. 哈尔滨:哈尔滨工程大学, 2012.
[35] Takuma T, Ikeda M, Masuda T. Facilitating multi-modal locomotion in a quadruped robot utilizing passive oscillation of the spine structure[C]//IEEE/RSJ International Conference on Intelligent Robots and System. Piscataway, NJ:IEEE, 2010:4940-4945.
[36] Takuma T, Izawa R, Inoue T, et al. Mechanical design of a trunk with redundant and viscoelastic joints for rhythmic quadruped locomotion[J]. Advanced Robotics, 2012, 26(7):745-764.
[37] Kuehn D, Bernhard F, Grimminger F, et al. Development of passive spine and actuated rear foot for an apelike robot[C]//International Conference on Climbing and Walking Robots and the Support technologies for Mobile Machines. London:Springer Press, 2010:237-244.
[38] Kuehn D, Grimminger F, Beinersdorf F, et al. Additional DOFs and sensors for bio-inspired locomotion:Towards active spine, ankle joints, and feet for a quadruped robot[C]//IEEE International Conference on Robotics and Biomimetic. Piscataway, NJ:IEEE, 2011:2780-2786.
[39] Bidgoly H J, Vafael A, Sadeghi A, et al. Learning approach of study effect of flexible spine on running behavior of a quadruped robot[C]//13th International Conference On Climbing and Walking Robots. Hackensack:World Scientific Press, 2010:146-152.
[40] Kani M H H, Derafshian M, Bidgoly H J, et al. Effect of flexible spine on stability of a passive quadruped robot:Experimental results[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2011:2793-2798.
[41] Zhao Q, Nakajima K, Sumioka H, et al. Embodiment enables the spinal engine in quadruped robot locomotion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE, 2012:2449-2456.
[42] Zhao Q, Nakajima K, Sumioka H, et al. Spine dynamics as a computational resource in spine-driven quadruped locomotion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE, 2013:1445-1451.
[43] Zhao Q, Ellenberger B, Sumioka H, et al. The effect of spine actuation and stiffness on a pneumatically-driven quadruped robot for cheetah-like locomotion[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2013:1807-1812.
[44] Seok S, Wang A, Chuah M Y, et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2013:3307-3312.
[45] Folkertsma G A, Kim S, Stramigioli S. Parallel stiffness in a bounding quadruped with flexible spine[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE, 2012:2210-2215.
[46] Pusey J L, Yoo J H. Validation and verification of a high fidelity computational model for a bounding robot's parallel actuated elastic spine[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2014, 9084(7):1-14.
[47] Eckert P, Sprowitz A, Witte H, et al. Comparing the effect of different spine and leg designs for a small bounding quadruped robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2015:3128-3133.
[48] Sabelhaus A P, Joshi A, Zhu E, et al. Design, simulation, and testing of a flexible actuated spine for quadruped robots[J]. arXiv preprint, 2018, arXiv:1804.06527.
[49] Zhang X L, Yu H B, Liu B Y, et al. A bio-inspired quadruped robot with a global compliant spine[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2013:1312-1316.
[50] 雷静桃, 俞煌颖. 四足机器人气动人工肌肉驱动的仿生柔性机体动力学分析[J]. 上海交通大学学报, 2014, 48(12):1688-1699.
[51] Wei Z, Song G M, Zhang Y, et al. Transleg:A wire-driven leg-wheel robot with a compliant spine[C]//IEEE International Conference on Information and Automation. Piscataway, NJ:IEEE, 2016:7-12.
[52] 马宗利, 吕荣基, 刘永超, 等. 仿猎豹四足机器人结构设计与分析[J]. 北京理工大学学报, 2018, 38(1):33-39.
[53] 王国彪, 陈殿生, 陈科位, 等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报, 2015, 51(13):27-44.
[54] Nicolelis M A L. Actions from thoughts[J]. Nature, 2001, 409(6818):403-407.
文章导航

/