[1] Hibert E. "Cheetahs on the Edge", a short movie by Greg Wilson[EB/OL]. (2013-04-26)[2019-02-12]. http://www.everseradio.com/cheetahs-on-the-edge/.
[2] Schilling N, Hackert R. Sagittal spine movements of small therian mammals during asymmetrical gaits[J]. The Journal of Experimental Biology, 2006, 209(10):3925-3939.
[3] Hackert R, Schilling N, Fischer M S. Mechanical self-stabilization, a working hypothesis for the study of the evolution of body proportions in terrestrial mammals[J]. Comptes Rendus Palevol, 2006, 5(3/4):541-549.
[4] Park S H, Kim D S, Lee Y J. Discontinuous spinning gait of a quadruped walking robot with waist-joint[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2005:2744-2749.
[5] Park S, Lee Y J. Discontinuous zigzag gait planning of a quadruped walking robot with a waist-joint[J]. Advanced Robotics, 2007, 21(1):143-164.
[6] Hutter M, Gehring C, Höpflinger M A, et al. Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped[J]. IEEE Transactions on Robotics, 2014, 30(6):1427-1440.
[7] Seok S, Wang A, Michael Chuah M Y, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT Cheetah Robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3):1117-1129.
[8] Hyun D J, Seok S, Lee J, et al. High speed trot-running:Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah[J]. International Journal of Robotics Research, 2014, 33(11):1417-1445.
[9] 董长生. 家畜解剖学[M]. 北京:中国农业出版社, 2001.
[10] Galbusera F, Wilke H J. Biomechanics of the Spine[M]. Pittsburgh:Academic Press, 2018:279-296.
[11] Reitmaier S, Schmidt H, Ihler R, et al. Preliminary investigations on intradiscal pressures during daily activities:An in vivo study using the merino sheep[J]. PLoS One, 2013, 8(7):e69610.
[12] Buttermann G R, Beaubien B P, Saeger L C. Mature runt cow lumbar intradiscal pressures and motion segment biomechanics[J]. Spine, 2009, 9(2):105-114.
[13] Wilke H J, Krischak S, Claes L. Biomechanical comparison of calf and human spines[J]. Journal of Orthopaedic Research, 1996, 14(3):500-503.
[14] Alini M, Eisenstein S M, Ito K, et al. Are animal models useful for studying human disc disorders/degeneration[J]. European Spine Journal, 2008, 17(1):2-19.
[15] Sheng S R, Xu H Z, Wang Y L, et al. Comparison of cervical spine anatomy in calves, pigs and humans[J]. PLoS One, 2016, 11(2):1-10.
[16] Reid J E, Meakin J R, Robins S P, et al. Sheep lumbar intervertebral discs as models for human discs[J]. Clinical Biomechanics, 2002, 17(4):312-314.
[17] Gambaryan P P. How mammals run[M]. Jerusalem:Krter Press, 1974.
[18] Gary J. How animals move[M]. London:Cambridge University Press, 1960.
[19] Schilling N, Hackert R. Sagittal spine movements of small therian mammals during asymmetrical gaits[J]. The Journal of Experimental Biology, 2006, 209(10):3925-3939.
[20] Miki K, Tsujita K. A study of the effect of structural damping on gait stability in quadrupedal locomotion using a musculoskeletal robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway NJ:IEEE, 2012:1976-1981.
[21] Kawasaki R, Sato R, Kazama E, et al. Development of a flexible coupled spine mechanism for a small quadruped robot[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2016:71-76.
[22] 张秀丽, 梁艳. 一种仿婴儿欠自由度四足爬行机器人[J]. 机器人, 2016, 38(4):458-466.
[23] 李冬冬. 柔顺四足机器人的设计与控制研究[D]. 北京:北京交通大学, 2012.
[24] Brooke M H. Investigation of an articulated spine in a quadruped robotic system[D]. Michigan:University of Michigan, 2011.
[25] 董立涛. 含脊柱关节四足机器人仿生结构设计及跳跃运动仿真研究[D]. 哈尔滨:哈尔滨工程大学, 2014.
[26] Lewis M A. Self-organization of locomotory controllers in robots and animals[D]. Los Angeles:University of Southern California, 1996.
[27] Berns K, Ilg W, Deck M, et al. Mechanical construction and computer architecture of the four-legged walking machine BISAM[J]. IEEE/ASME Transactions on mechatronics, 1999, 24(1):32-38.
[28] Ishii H, Masuda Y, Miyagishima S, et al. Design and development of biomimetic quadruped robot for behavior of rats and mice[C]//31st Annual International Conference of the IEEE EMBS. Piscataway NJ:IEEE, 2009:7192-7195.
[29] Narioka K, Rosendo A, Sproewitz A, et al. Development of a minimalistic pneumatic quadruped robot for fast locomotion[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2012:307-311.
[30] Jason D. Boston dynamics robot Cheetah outruns swiftest human[EB/OL]. (2012-09-10)[2019-03-02]. https://singularityhub.com/2012/09/10/boston-dynamics-robotcheetah-outruns-swiftest-human/.
[31] 吴海波. 具有可变刚度的四足机器人仿生脊柱设计与应用研究[D]. 北京:北京交通大学, 2016.
[32] Khoramshahi M, Sprowitz A, Tuleu A, et al. Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2013:3329-3334.
[33] Weinmeister K, Eckert P, Witte H, et al. Cheetah-cubS:Steering of a quadruped robot using trunk motion[C]//IEEE International Symposium on Safety. Piscataway, NJ:IEEE, 2016:3021-3026.
[34] 张群. 含脊柱关节驱动机构四足机器人跳跃机理研究[D]. 哈尔滨:哈尔滨工程大学, 2012.
[35] Takuma T, Ikeda M, Masuda T. Facilitating multi-modal locomotion in a quadruped robot utilizing passive oscillation of the spine structure[C]//IEEE/RSJ International Conference on Intelligent Robots and System. Piscataway, NJ:IEEE, 2010:4940-4945.
[36] Takuma T, Izawa R, Inoue T, et al. Mechanical design of a trunk with redundant and viscoelastic joints for rhythmic quadruped locomotion[J]. Advanced Robotics, 2012, 26(7):745-764.
[37] Kuehn D, Bernhard F, Grimminger F, et al. Development of passive spine and actuated rear foot for an apelike robot[C]//International Conference on Climbing and Walking Robots and the Support technologies for Mobile Machines. London:Springer Press, 2010:237-244.
[38] Kuehn D, Grimminger F, Beinersdorf F, et al. Additional DOFs and sensors for bio-inspired locomotion:Towards active spine, ankle joints, and feet for a quadruped robot[C]//IEEE International Conference on Robotics and Biomimetic. Piscataway, NJ:IEEE, 2011:2780-2786.
[39] Bidgoly H J, Vafael A, Sadeghi A, et al. Learning approach of study effect of flexible spine on running behavior of a quadruped robot[C]//13th International Conference On Climbing and Walking Robots. Hackensack:World Scientific Press, 2010:146-152.
[40] Kani M H H, Derafshian M, Bidgoly H J, et al. Effect of flexible spine on stability of a passive quadruped robot:Experimental results[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2011:2793-2798.
[41] Zhao Q, Nakajima K, Sumioka H, et al. Embodiment enables the spinal engine in quadruped robot locomotion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE, 2012:2449-2456.
[42] Zhao Q, Nakajima K, Sumioka H, et al. Spine dynamics as a computational resource in spine-driven quadruped locomotion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE, 2013:1445-1451.
[43] Zhao Q, Ellenberger B, Sumioka H, et al. The effect of spine actuation and stiffness on a pneumatically-driven quadruped robot for cheetah-like locomotion[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2013:1807-1812.
[44] Seok S, Wang A, Chuah M Y, et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2013:3307-3312.
[45] Folkertsma G A, Kim S, Stramigioli S. Parallel stiffness in a bounding quadruped with flexible spine[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE, 2012:2210-2215.
[46] Pusey J L, Yoo J H. Validation and verification of a high fidelity computational model for a bounding robot's parallel actuated elastic spine[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2014, 9084(7):1-14.
[47] Eckert P, Sprowitz A, Witte H, et al. Comparing the effect of different spine and leg designs for a small bounding quadruped robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2015:3128-3133.
[48] Sabelhaus A P, Joshi A, Zhu E, et al. Design, simulation, and testing of a flexible actuated spine for quadruped robots[J]. arXiv preprint, 2018, arXiv:1804.06527.
[49] Zhang X L, Yu H B, Liu B Y, et al. A bio-inspired quadruped robot with a global compliant spine[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2013:1312-1316.
[50] 雷静桃, 俞煌颖. 四足机器人气动人工肌肉驱动的仿生柔性机体动力学分析[J]. 上海交通大学学报, 2014, 48(12):1688-1699.
[51] Wei Z, Song G M, Zhang Y, et al. Transleg:A wire-driven leg-wheel robot with a compliant spine[C]//IEEE International Conference on Information and Automation. Piscataway, NJ:IEEE, 2016:7-12.
[52] 马宗利, 吕荣基, 刘永超, 等. 仿猎豹四足机器人结构设计与分析[J]. 北京理工大学学报, 2018, 38(1):33-39.
[53] 王国彪, 陈殿生, 陈科位, 等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报, 2015, 51(13):27-44.
[54] Nicolelis M A L. Actions from thoughts[J]. Nature, 2001, 409(6818):403-407.