综述

碳酸盐岩沉积相研究进展

  • 李峰峰 ,
  • 郭睿 ,
  • 余义常
展开
  • 中国石油勘探开发研究院, 北京 100083
李峰峰,博士,研究方法为油气开发地质,电子信箱:18810853190@163.com

收稿日期: 2019-04-19

  修回日期: 2019-08-21

  网络出版日期: 2021-06-08

基金资助

国家科技重大专项(2017ZX05030-001)

Progress and prospects of studies of carbonate rock facies

  • LI Fengfeng ,
  • GUO Rui ,
  • YU Yichang
Expand
  • PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China

Received date: 2019-04-19

  Revised date: 2019-08-21

  Online published: 2021-06-08

摘要

总结碳酸盐岩沉积相研究进展及方法,指出其中存在的问题和发展趋势。结果表明,国外对海相碳酸盐岩沉积相划分注重碳酸盐岩沉积类型的地理分布规律和沉积能量差异,中国则侧重于沉积相的精细划分和岩相古地理分析。中国四川盆地和南海海域的生物礁研究取得重大进展,对生物礁的形成环境、控制因素、发育模式和表征方法等认识不断深化。湖相碳酸盐岩沉积模式多样,微生物碳酸盐岩逐渐成为研究热点,沉积模式不断完善。冷水碳酸盐岩的时空分布、发育机理、控制因素、沉积物特征及油气地质意义研究程度不断提高。碳酸盐岩沉积相研究方法包括地质分析法和地球物理法,其中地质分析法包括微相分析法、实验分析法、生物相法和地球化学法,地球物理法包括数学-测井法和地震方法。碳酸盐岩沉积相研究存在问题有:海相碳酸盐岩分类体系缺乏统一的标准和规范;实验分析法、生物相方法及地球化学法应用较少;浅滩发育模式和深水碳酸盐岩研究薄弱。碳酸盐岩沉积相的发展趋势为:研究方法不断实现定性方法和定量方法的结合,突破碳酸盐岩混合沉积研究技术瓶颈;不断深化深水、冷水等非常规碳酸盐岩理论认识和油气潜力分析;相控原则应用更为广泛,相控建模、相控成岩演化、相控储层分类等方法不断深入。

本文引用格式

李峰峰 , 郭睿 , 余义常 . 碳酸盐岩沉积相研究进展[J]. 科技导报, 2021 , 39(8) : 128 -140 . DOI: 10.3981/j.issn.1000-7857.2021.08.015

Abstract

This paper reviews the studies of carbonate facies, and analyzes related problems and prospects. It is shown that the abroad studies mainly focus on the geographical distributions of the sedimentary rocks and the difference in the sedimentary energy in the facies belt in contrast with the domestic studies, which put the emphasis on the refinement of the facies and the lithofacies paleogeography. The studies of the reefs in the Sichuan Basin and the South China Sea made a great progress, with a better understanding of the reef formation environment, the controlling factors, the developmental mode and the characterization methods. The sedimentary models of the lacustrine carbonate rocks are diverse, and the sedimentary model of the microbial carbonate rocks is continuously improved. Significant progress is made in the spatial and temporal distributions, the developmental mechanisms, the controlling factors, the sediment characteristics and the geological significance of the cold water carbonate rocks. There are two methods to study the carbonate facies:the geological method and the geophysical method. The geological method includes the microfacies analysis, the experiment analysis, the biological facies and the geochemical methods while the geophysical method includes the mathematics-logging and seismic methods. However, the classification of the carbonate facies is not yet standardized. The method of the experimental analysis, the biological facies and the geochemical are less studied. The studies of the shoal architecture are few. The studies of the low energy environment are even fewer. It is concluded that the techniques tend to be a combination of qualitative and quantitative ones. The unconventional carbonate rocks such as the deep water and the cold water ones should be further studied. The principle of the facies controlling reservoirs is widely used, and the facies controlling modeling, the facies controlling diagenetic analysis, and the genetic classification, would effectively guide the carbonate reservoirs.

参考文献

[1] Shaw A B. Time in stratigraphy[M]. New York:McGrawHill, 1964.
[2] Irwin M L. General theory of epeiric clear water sedimentation[J]. AAPG Bulletin, 1965, 49:445-459.
[3] 冯增昭. 碳酸盐岩岩相古地理学[M]. 北京:石油工业出版社, 1989.
[4] Armstrong A K. Carboniferous carbonate depositional models, preliminary lithofacies and paleotectonics maps[J]. AAPG Bulletin, 1974, 58(4):621-645.
[5] Wilson J L. Carbonate facies in geologic history[M]. Berlin:Springer Verlag, 1975:348-374.
[6] Read J F. Carbonate platform facies models[J]. AAPG Bulletin, 1985, 69(1):1-21.
[7] Read J F. Carbonate platforms of passive (extensional) continental margins:Types, characteristics and evolution[J]. Tectonophysics, 1982, 81(3):195-212.
[8] Schlager W. On the definition of ramp[J]. Gaea Heidelbergensis, 1997, 30(4):165-193.
[9] Flügel E. 碳酸盐岩微相-分析、解释及应用[M]. 马永生, 译. 北京:地质出版社, 2006:628-696.
[10] 顾家裕, 马锋, 季丽丹. 碳酸盐岩台地类型、特征及主控因素[J]. 古地理学报, 2009, 11(1):21-27.
[11] 陈洪德, 钟怡江, 许效松, 等. 中国西部三大盆地海相碳酸盐岩台地边缘类型及特征[J]. 岩石学报, 2014, 30(3):609-621.
[12] 金振奎, 石良, 高白水, 等. 碳酸盐岩沉积相及相模式[J]. 沉积学报, 2013, 31(6):965-979.
[13] 米立军, 曾清波, 杨海长. 东沙隆起珠江组生物礁类型及勘探方向[J]. 石油学报, 2013, 34(2):24-31.
[14] 刘治成, 张廷山, 党录瑞, 等. 川东北地区长兴组生物礁成礁类型及分布[J]. 中国地质, 2011, 38(5):1298-1311.
[15] 武恒志, 吴亚军, 柯光明. 川东北元坝地区长兴组生物礁发育模式与储层预测[J]. 石油与天然气地质, 2017, 38(4):645-657.
[16] 杨振, 张光学, 张莉, 等. 南海南部北康盆地生物礁的类型及油气勘探前景[J]. 中国地质, 2017, 44(3):428-438.
[17] 郭旭升, 胡东风, 李宇平, 等. 四川盆地元坝气田发现与理论技术[J]. 石油勘探与开发, 2018, 45(1):14-26.
[18] 黄仁春. 四川盆地二叠纪-三叠纪开江-梁平陆棚形成演化与礁滩发育[J]. 成都理工大学学报(自然科学版), 2014, 41(4):452-457.
[19] 陈辉, 郭海洋, 徐祥恺, 等. 四川盆地剑阁-九龙山地区长兴期与飞仙关期古地貌演化特征及其对礁滩体的控制[J]. 石油与天然气地质, 2016, 37(6):854-861.
[20] 黄家园, 梁昆, 王玉珏, 等. 全球泥盆纪生物礁演化及其影响因素[J]. 地层学杂志, 2019, 43(2):198-209.
[21] 吕其彪, 吴清杰, 毕有益. 高分辨率地震解释预测礁滩相储集层[J]. 新疆石油地质, 2012, 33(5):557-559.
[22] 吴勇, 周路, 钟斐艳, 等. 基于坡度属性的生物礁边界精细预测方法——以四川盆地罗顶寨地区二叠系长兴组为例[J]. 石油勘探与开发, 2017, 44(6):907-918.
[23] Cohen A S, Thouin C. Nearshore carbonate deposits in Lake Tanganyika[J]. Geology, 1987, 15(5):414-418.
[24] Ryder R T, Fouch T D, Elison J H. Early Tertiary sedimentation in the western Uinta Basin, Utah[J]. Geological Society of America Bulletin, 1976, 87(4):496-512.
[25] 杨有星, 高永进, 张君峰, 等. 歧口和泌阳凹陷两种类型湖相碳酸盐岩沉积特点[J]. 现代地质, 2019, 33(4):831-840.
[26] Bohacs K M, Carrolla R, Neal J E, et al. Lake-basin type, source potential, and hydrocarbon character:An integrated sequence-stratigraphic-geochemical framework[J]. AAPG Studies in Geology, 2000, 46:3-34.
[27] Warren J. Dolomite:Occurrence, evolution and economically important associations[J]. Earth-Science Review, 2000, 52(1/2/3):1-81.
[28] Nevolin N V, Fedorov D L. Palaeozoic pre-salt sediments in the precaspian petroliferous province[J]. Journal of Petroleum Geology, 1995, 18(4):453-470.
[29] 夏青松, 田景春, 倪新锋. 湖相碳酸盐岩研究现状及意义[J]. 沉积与特提斯地质, 2003, 23(1):105-112.
[30] 孙钰, 钟建华, 袁向春, 等. 国内湖相碳酸盐岩研究的回顾与展望[J]. 特种油气藏, 2008, 15(5):1-6.
[31] Eugster H P, Hardie L A. Sedimentation in an ancient Playa-Lake complex:The Wilkins Peak member of the Green River formation of Wyoming[J]. Geological Society of America Bulletin, 1975, 86(3):319-334.
[32] Wilkinson B H, Pope B N, Owen R M. Nearshore ooid formation in a modern temperate region Marl Lake[J]. Journal of Geology, 1980, 88(6):697-704.
[33] 杜韫华. 渤海湾地区下第三系湖相碳酸盐岩及沉积模式[J]. 石油与天然气地质, 1990, 11(4):376-392.
[34] 纪友亮, 马达德, 薛建勤, 等. 柴达木盆地西部新生界陆相湖盆碳酸盐岩沉积环境与沉积模式[J]. 古地理学报, 2017, 19(5):757-772.
[35] 朱石磊, 吴克强, 吕明, 等. 巴西坎波斯盆地湖相介壳灰岩特征及沉积模式[J]. 中国海上油气, 2017, 29(2):36-45.
[36] 周自立, 杜韫华. 湖相碳酸盐岩的沉积相与油气分布关系——以山东胜利油田下第三系碳酸盐岩为例[J]. 石油实验地质, 1986, 8(2):123-132.
[37] Steele J H. A description of the Oolitic Formation lately discovered in the county of Saratoga, and state of New York[J]. American Journal of Science and Arts, 1825, 9(1):16-19.
[38] Riding R. Microbial carbonates:The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(1):179-214.
[39] Arenas C, Cabrera L, Ramos E. Sedimentology of tufa facies and continental microbialites from Palaeogene of Mallorca Island (Spain)[J]. Sedimentary Geology, 2007, 197(1/2):1-27.
[40] Bahniuk A M, Anjos S, Franca A B, et al. Development of microbial carbonates in the Lower Cretaceous Codo Formation (northeast Brazil):Implications for interpretation of microbialite facies associations and palaeoenvironmental conditions[J]. Sedimentology, 2015, 62(1):155-181.
[41] 王颖, 王晓州, 康洪全, 等. 桑托斯盆地白垩系湖相碳酸盐岩微生物礁滩的成因[J]. 成都理工大学学报(自然科学版), 2017, 44(1):67-75.
[42] 温志峰, 钟建华, 王冠民, 等. 柴达木盆地古近纪-新近纪湖相叠层石与藻礁的沉积组合特征与意义[J]. 地质学报, 2005, 79(4):444-452.
[43] 吉云平, 杨振京, 赵华, 等. 河北阳原盆地井儿洼剖面常量元素地球化学特征揭示的中更新世晚期以来气候变化[J]. 古地理学报, 2016, 18(3):487-496.
[44] 唐鑫萍, 黄文辉, 邓宏文, 等. 山东平邑盆地古近系湖相微生物碳酸盐岩形成机理[J]. 古地理学报, 2012, 14(3):355-364.
[45] 张德民, 段太忠, 张忠民, 等. 湖相微生物碳酸盐岩沉积相模式研究——以桑托斯盆地A油田为例[J]. 西北大学学报(自然科学版), 2018, 48(3):413-422.
[46] Pedley H M, Carannante G. Cool-water carbonates:Depositional systems and palaeoenvironmental controls[M]. London:Geological Society Special Publications, 2006.
[47] Chave K E. Recent carbonate sediments:An unconventional view[J]. Journal of Geological Education, 1967, 15(5):200-204.
[48] Nelson C S, Hancock G E, Kamp P J J. Shelf to basin, temperate skeletal carbonate sediments, Three Kings Plateau, New Zealand[J]. Journal of Sedimentary Research, 1982, 52(3):717-732.
[49] Bosence D W J. Sedimentary facies, production rates and facies models for recent coralline algal gravels, Co. Galway, Ireland[J]. Geological Journal, 1980, 15(2):91-111.
[50] James N P, Bone Y. Origin of a cool-water, Oligo-Miocene deep shelf limestone, Eucla Platform, southern Australia[J]. Sedimentology, 1991, 38(2):323-341.
[51] Martín J M, Braga J C, Betzler C, et al. Sedimentary model and high-frequency cyclicity in a Mediterranean, shallowshelf, temperate-carbonate environment (uppermost Miocene, Agua Amarga basin, southern Spain)[J]. Sedimentology, 1996, 43(2):263-277.
[52] Draper J J. Permian limestone in the southeastern Bowen Basin, Queensland:An example of temperate carbonate deposition[J]. Sedimentary Geology, 1988, 60(1/4):155-162.
[53] Nelson C S, Bornhold B D. Temperate skeletal carbonate sediments on Scott shelf, northwestern Vancouver Island, Canada[J]. Marine Geology, 1983, 52(3/4):241-266.
[54] John M R, Noel P J, Kyser T K. Early diagenesis of carbonates on a cool-water carbonate shelf, southern Australia[J]. Journal of Sedimentary Research, 2008, 78(12):784-802.
[55] Pugliano T M, Goldstein R H, Franseen E K. Fundamental controls on modeling reservoir properties of finingupdip heterozoan carbonates:AAPG 2016 annual convention and exhibition[C]. Calgary, Alberta, Canada:AAPG, 2016.
[56] James N P. Carbonates in a cold ocean; the evolving paradigm[R]. Calgary Canada:Department of Geological Sciences and Geological Engineering, Queen's University, 2016.
[57] 贾承造, 张杰, 沈安江, 等. 非暖水碳酸盐岩:沉积学进展与油气勘探新领域[J]. 石油学报, 2017, 38(3):241-254.
[58] Lees A, Buller A T. Modern temperate-water and warmwater shelf carbonate sediments contrasted[J]. Marine Geology, 1972, 13(5):67-73.
[59] 包洪平, 杨承运. 碳酸盐岩微相分析及其在岩相古地理研究中的意义[J]. 岩相古地理, 1999, 19(6):59-64.
[60] 肖传桃, 龚文平, 罗顺社, 等. 华南地区奥陶纪头足类生物相及其分区[J]. 沉积学报, 2006, 24(2):242-250.
[61] 肖传桃, 龚丽, 梁文君. 川西地区中二叠统-中三叠统古生态研究[J]. 地球科学进展, 2014, 29(7):819-827.
[62] 肖传桃, 肖胜, 田宜聪, 等. 川西地区中二叠世-中三叠世生物相及其分区研究[J]. 地球科学进展, 2015, 30(5):602-608.
[63] 黄杏珍. 扫描电镜下灰泥灰岩的鉴别及其沉积环境意义的探讨[J]. 沉积学报, 1984, 2(3):91-100.
[64] Hemming N G, Meyers W J, Grams J C. Cathodoluminescnce in diagenetic calcites:The roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements[J]. Journal of Sedimentary Petrology, 1989, 59(3):404-411.
[65] 樊爱萍, 杨仁超, 韩作振, 等. 鲁西地区张夏组碳酸盐岩成岩系统[J]. 沉积学报, 2015, 33(1):67-78.
[66] 汪凯明, 罗顺社. 碳酸盐岩地球化学特征与沉积环境判别意义——以冀北坳陷长城系高于庄组为例[J]. 石油与天然气地质, 2009, 30(3):343-349.
[67] Fruth I, Scherreiks R. Facies and geochemical correlations in the Upper Hauptdolomit (Norian) of the eastern Lechtaler Alps[J]. Sedimentary Geology, 1975, 13(1):27-45.
[68] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks:Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1):97-113.
[69] 侯恩刚, 高金汉, 王训练, 等. 西藏改则上三叠统日干配错组碳酸盐岩地球化学特征及沉积环境意义[J]. 矿物岩石地球化学通报, 2015, 34(3):556-563.
[70] 潘明, 吕勇, 山克强, 等. 云南保山栗柴坝组碳酸盐岩地球化学特征及环境意义[J]. 地质论评, 2015, 61(2):333-343.
[71] Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies:An isotopic and REE study of cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2):29-48.
[72] 胡俊杰, 李琦, 李娟, 等. 羌塘盆地角木日地区二叠系碳酸盐岩元素地球化学特征及其对古沉积环境的指示[J]. 高校地质学报, 2014, 20(4):520-527.
[73] 王玉玺, 田昌炳, 高计县, 等. 常规测井资料定量解释碳酸盐岩微相——以伊拉克北Rumaila油田Mishrif组为例[J]. 石油学报, 2013, 34(6):1088-1099.
[74] 付金华, 吴兴宁, 孙六一, 等. 鄂尔多斯盆地马家沟组中组合岩相古地理新认识及油气勘探意义[J]. 天然气工业, 2017, 37(3):9-16.
[75] 吴煜宇, 张为民, 田昌炳, 等. 成像测井资料在礁滩型碳酸盐岩储集层岩性和沉积相识别中的应用——以伊拉克鲁迈拉油田为例[J]. 地球物理学进展, 2013, 28(3):1497-1506.
[76] 曾洪流. 地震沉积学在中国:回顾和展望[J]. 沉积学报, 2011, 29(3):61-70.
[77] 何金海, 李国蓉, 彭博. 碳酸盐岩地震地貌学研究与应用——以四川盆地东北部上二叠统长兴组为例[J]. 海相油气地质, 2014, 19(4):45-49.
[78] 冯增昭. 单因素分析多因素综合作图法——定量岩相古地理重建[J]. 古地理学报, 2004, 6(1):3-19.
[79] 曾洪流, 赵文智, 徐兆辉, 等. 地震沉积学在碳酸盐岩中的应用——以四川盆地高石梯-磨溪地区寒武系龙王庙组为例[J]. 石油勘探与开发, 2018, 45(5):775-784.
[80] 隋淑玲, 唐军, 蒋宇冰, 等. 常用地震反演方法技术特点与适用条件[J]. 油气地质与采收率, 2012, 19(4):38-41.
[81] 撒利明, 杨午阳, 姚逢昌, 等. 地震反演技术回顾与展望[J]. 石油地球物理勘探, 2015, 50(1):184-202.
[82] 冯增昭. 岩石不是微相[J]. 古地理学报, 2017, 19(5):754.
[83] 冯增昭. 岩石不是岩相[J]. 古地理学报, 2018, 20(3):452.
文章导航

/