专题:第三代半导体的创新发展

4H-SiC功率肖特基二极管可靠性研究进展

  • 张玉明 ,
  • 袁昊 ,
  • 汤晓燕 ,
  • 宋庆文 ,
  • 何艳静 ,
  • 李东洵 ,
  • 白志强
展开
  • 西安电子科技大学微电子学院, 西安 710071
张玉明,教授,研究方向为宽禁带半导体材料和器件,电子信箱:zhangym@xidian.edu.cn

收稿日期: 2020-08-21

  修回日期: 2021-02-03

  网络出版日期: 2021-09-07

基金资助

国家自然科学基金项目(61804118);陕西省重点研发计划项目(2018ZDL-GY01-03)

Research progress on reliability of 4H-SiC power Schottky diodes

  • ZHANG Yuming ,
  • YUAN Hao ,
  • TANG Xiaoyan ,
  • SONG Qingwen ,
  • HE Yanjing ,
  • LI Dongxun ,
  • BAI Zhiqiang
Expand
  • School of Microelectronics, Xidian University, Xi'an 710071, China

Received date: 2020-08-21

  Revised date: 2021-02-03

  Online published: 2021-09-07

摘要

4H-SiC功率器件作为一种宽禁带半导体器件,凭借突出的材料优势具有耐压高、导通电阻低、散热好等优势。近年来随着器件的逐步商用,器件的可靠性问题成为新的研究热点。综述了本课题组近期在4H-SiC功率二极管可靠性方面的研究进展,通过高温存储和高压反偏可靠性问题的研究,分析了器件性能退化机制。通过重复雪崩可靠性问题的研究,提出了一种可有效提升器件抗重复雪崩能力的终端方案。

关键词: 4H-SiC; 二极管; MOSFET

本文引用格式

张玉明 , 袁昊 , 汤晓燕 , 宋庆文 , 何艳静 , 李东洵 , 白志强 . 4H-SiC功率肖特基二极管可靠性研究进展[J]. 科技导报, 2021 , 39(14) : 63 -68 . DOI: 10.3981/j.issn.1000-7857.2021.14.006

Abstract

As a wide band gap semiconductor device, the 4H-SiC power device has the advantages of high voltage, low conduction resistance and good heat dissipation due to its outstanding material features. In recent years, with the gradual commercialization of the devices, the reliability of the devices becomes a new research hotspot. This paper reviews the recent research progress of our research group on the reliability of the 4H-SiC power diodes. The degradation mechanism of the device performance is analyzed in terms of the high temperature storage and the high voltage anti bias property. According to the reliability of the avalanche, the 4H-SiC JBS diodes with the traditional FLRs and the trench FLRs terminal structure is designed and prepared. The results indicate that the trench FLRs can be used in the terminal scheme to effectively improve the capability of the device on the anti repeated avalanche.

Key words: 4H-SiC; diode; MOSFET

参考文献

[1] Sugawara Y, Asano K, Saito R. 3.6 kV 4H-SiC JBS diodes with Low RonS[J]. Materials Science Forum, 2000(338/342):1183-1186.
[2] Banu V, Brosselard P, Jorda X, et al. Behaviour of 1.2 kV SiC JBS diodes under repetitive high power stress[J]. Microelectronics Reliability, 2008, 48(8/9):1444-1448.
[3] Zhu L, Chow T P, Jones K A, et al. Design, fabrication, and characterization of low forward drop, low leakage, 1-kV 4H-SiC JBS rectifiers[J]. IEEE Transactions on Electron Device, 2006, 53(2):363-368.
[4] Rabkowski J, Tolstoy G, Peftitsis D, et al. Low-loss high performance base-drive unit for SiC BJTs[J]. IEEE Transactions On Power Electronics, 2012, 27(5):2633-2643.
[5] Kranzer D, Reiners F, Wilhelm C, et al. System improvements of photovoltaic inverters with SiC-transistors[J]. Material Science Forum, 2010(645/648):1171-1176.
[6] Discrete SiC Schottky diodes[EB/OL].[2020-05-04]. https://www.wolfspeed.com/power/products/sic-schottky-diodes.
[7] CoolSiCTM Schottky diodes[EB/OL].[2020-05-06]. https://www.infineon.com/cms/en/product/power/diodes-thyristors/coolsic-schottky-diodes.
[8] 泰科天润[EB/OL].[2020-07-04]. http://www.globalpowertech.cn/service.
[9] Huang R H, Tao Y H, Cao P F, et al. Development of 10 kV 4H-SiC JBS diode with FGR termination[J]. Journal of Semiconductors, 2014, 35(7):074005.
[10] Ren N, Wang J, Sheng K. Design and experimental study of 4H-SiC trenched junction barrier Schottky diodes[J]. IEEE Transactions on Electron Devices, 2014, 61(7):2459-2465.
[11] Yuan H, Song Q W, Tang X Y, et al. High performance of 5.7 kV 4H-SiC JBSs with optimized non-uniform field limiting rings termination[J]. Materials Science Forum, 2016(858):986-989.
[12] Dou W T, Song Q W, Yuan H, et al. Design and fabrication of high performance 4H-SiC TJBS diodes[J]. Journal of Crystal Growth, 2020, 533:125421.
[13] Huang X, Wang G Y, Lee M C, et al. Reliability of 4HSiC SBD/JBS diodes under repetitive surge current stress[C]//Energy Conversion Congress and Exposition. Piscataway, NJ:IEEE, 2012:2245-2248.
[14] Wu J P, Ren N, Wang H Y, et al. 1.2 kV 4H-SiC merged PiN Schottky diode with improved surge current capability[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(3):1496-1504.
[15] Xu H Y, Sun J H, Cui J J, et al. Surge capability of 1.2 kV SiC diodes with high-temperature implantation[C]//Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs. Piscataway, NJ:IEEE, 2018. doi:10.1109/ECCE.2012.6342436.
[16] Banu V, Godignon P, Jorda X, et al. High temperature SiC Schottky diodes with stable operation for space application[C]//CAS 2010 Proceedings. Piscataway, NJ:IEEE, 2010:397-400.
[17] Godignon P, Jorda X, Vellvehi M, et al. SiC Schottky diodes for harsh environment space applications[J]. IEEE Transactions on Industrial Electronics, 2011, 58(7):2582-2590.
[18] Huang X, Wang G, Jiang L, et al. Ruggedness analysis of 600 V 4H-SiC JBS diodes under repetitive avalanche conditions[C]. Applied Power Electronics Conference and Exposition. Piscataway, NJ:IEEE, 2012:1688-1691.
[19] Draghici M, Rupp R, Gerlach R, et al. A new 1200 V SiC MPS diode with improved performance and ruggedness[J]. Materials Science Forum, 2015(821/823):608-611.
[20] Liu S, Yang C, Sun W, et al. Repetitive-avalanche-induced electrical parameters shift for 4H-SiC junction barrier Schottky diode[J]. IEEE Transactions on Electron Devices, 2015, 62(2):601-605.
[21] Yang S, Zhang Y M, Song Q W, et al. Impact of hightemperature storage stressing (HTSS) on degradation of high-voltage 4H-SiC junction barrier Schottky diodes[J]. IEEE Transactions on Power Electronics, 2017(99):1.
[22] Song Q W, Yuan H, Sun Q J, et al. Reverse-bias stressinduced electrical parameters instability in 4H-SiC JBS diodes terminated nonequidistance FLRs[J]. IEEE Transactions on Electron Devices, 2019, 66(9):3935-3939.
[23] Yuan H, Liu Y C, Hu Y F, et al. Characteristic and robustness of trench floating limiting rings for 4H-SiC junction barrier Schottky rectifiers[J]. IEEE Electron Device Letters, 2020, 41(7):1056-1059.
文章导航

/