专题:第三代半导体的创新发展

扬帆芯未来,助力新基建,大力推进第三代半导体制造装备国产化

  • 王志越 ,
  • 巩小亮 ,
  • 付丙磊
展开
  • 1. 中电科电子装备集团有限公司, 北京 100070;
    2. 中国电子科技集团公司第四十八研究所, 长沙 410111;
    3. 华锦控股集团有限公司, 北京 100000
王志越,研究员,研究方向为电子专用设备及配套工艺,电子信箱:wangzhy@45inst.com

收稿日期: 2020-08-10

  修回日期: 2021-02-04

  网络出版日期: 2021-09-07

Promote the domestication of the third-generation semiconductor equipment to embrace the dawn of semiconductors and consolidate the new infrastructure

  • WANG Zhiyue ,
  • GONG Xiaoliang ,
  • FU Binglei
Expand
  • 1. The CETC Electronic Equipment Group Co., Ltd., Beijing 100070, China;
    2. The 48 th Institute of CETC, Changsha 410111, China;
    3. Huajin Holding Group Co., Ltd., Beijing 100000, China

Received date: 2020-08-10

  Revised date: 2021-02-04

  Online published: 2021-09-07

摘要

第三代半导体以碳化硅、氮化镓等材料为代表,已经在5G基站、新能源汽车充电桩等新基建领域崭露头角。第三代半导体加工工艺具有高温、高能量、低损伤等特点和要求,决定了其制造装备相对通用半导体制造装备具有独特性。综述了第三代半导体制造装备需求及其国产化现状,提出了相关产业发展建议:以企业为主体,产学研用协同创新;着力装备共性技术,培育自主零部件配套体系;加强创新人才培养,增强产业发展后劲。

本文引用格式

王志越 , 巩小亮 , 付丙磊 . 扬帆芯未来,助力新基建,大力推进第三代半导体制造装备国产化[J]. 科技导报, 2021 , 39(14) : 83 -91 . DOI: 10.3981/j.issn.1000-7857.2021.14.008

Abstract

The third-generation semiconductors, with the SiC and the GaN as the representatives, are widely used in the new infrastructure like the 5G base station and the EV charging point. The manufacturing process of the third-generation semiconductor requires high temperature, high energy and low damage, and the related equipment thus has to be modified. The requirements of the process and the related equipment for the third-generation semiconductor are presented. This paper also reviews the domestication of the third-generation semiconductor equipment and offer suggestions for the future, such as we should take the enterprise as the main body and make the collaborative innovation in production, teaching, research and application; focus on equipping the technology in common uses and cultivating the independent part supporting system; strengthen the cultivation of the innovative talents and enhance the potential of the industrial development.

参考文献

[1] 李晋闽. 新旧动能转换引领第三代半导体产业创新发展[J]. 中国科技产业, 2018(1):54-55.
[2] International Roadmap For Devices and Systems[EB/OL].[2020-07-30]. https://irds.ieee.org.
[3] 周哲, 付丙磊, 王栋, 等. 集成电路制造工艺技术现状与发展趋势[J]. 电子工业专用设备, 2017(3):34-38.
[4] Smith S A, Wolden C A, Bremser M D, et al. High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma[J]. Applied Physics Letters, 1997, 71(25):3631-3633.
[5] Takahashi N, Itoi S, Nakashima Y, et al. High temperature ion implanter for SiC and Si devices[C]//International Workshop on Junction Technology. Piscataway, NJ:IEEE, 2015.
[6] Chung G Y, Tin C C, Williams J R, et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide[J]. IEEE Electron Device Letters, 2001, 22(4):176-178.
[7] Dutta G, DasGupta N, DasGupta A. Low-temperature ICP-CVD SiNx as gate dielectric for GaN-based MISHEMTs[J]. IEEE Transactions on Electron Devices, 2016, 63(12):4693-4701.
[8] Jose M. A survey of wide bandgap power semiconductor devices[J]. IEEE Transactions on Powerelectronics, 2014, 29(5):2155-2163.
[9] Tsunenobu K. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54:040103.
[10] Nakamura S, Mukai T, Senoh M. Si-and Ge-doped GaN films grown with GaN buffer layers[J]. Japanese Journal of Applied Physics, 1992, 31(2):883.
[11] Oshima M, Mori D, Takigawa A, et al. Photoelectron nano-spectroscopy of Reactive Ion Etching-induced damages to the trench sidewalls and bottoms of 4H-SiC trench-MOSFETs[J]. E-Journal of Surface Science and Nanotechology, 2018, 16:257-261.
[12] Goh J, Kim K. Low on-resistance 4H-SiC UMOSFET with local floating superjunction[J]. Journal of Computational Electronics, 2019, 19(1):234-241.
[13] Chen K J, Haeberlen O, Lidow A. GaN-on-Si power technology:Devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3):779-795.
[14] Mannequin C, Vallee C, Akimoto K, et al. Comparative study of two atomic layer etching processes for GaN[J]. Journal of Vacuum Science & Technology A, 2020, 38(3):032602.
[15] Wang H C, Lumbantoruan F J, Hsieh T, et al. High-performance LPCVD-SiNx/InAlGaN/GaN MIS-HEMTs with 850-V 0.98-m Ω·cm2 for power device applications[J]. IEEE Journal of the Electron Devices Society, 2018, 6(1):1136-1141.
[16] Hofmann D, Bickermann M, Eckstein R, et al. Sublimation growth of silicon carbide bulk crystals:Experimental and theoretical studies on defect formation and growth rate augmentation[J]. Journal of Crystal Growth, 1999(suppl 198/199):1005-1010.
[17] Hidekazu T, Isaho K, Tetsuya M, et al. Recent advances in 4H-SiC epitaxy for high-voltage power devices[J]. Materials Science in Semiconductor Processing, 2018, 78:2-12.
[18] Yoshiaki D, Shigeaki I, Takehiko K. Impacts of surface C/Si ratio on in-wafer uniformity and defect density of 4H-SiC homo-epitaxial films grown by high-speed wafer rotation vertical CVD[J]. Japanese Journal of Applied Physics, 2019, 58(SB):SBBK06.
[19] Kohei S, Keisuke K, Hitoshi H. Quick cleaning process for silicon carbide chemical vapor deposition reactor[J]. ECS Journal of Solid State Science and Technology, 2017, 6(8):526-530.
[20] Kosuke M, Kohei S, Hitoshi H. Repetition of in situ cleaning using chlorine trifluoride gas for silicon carbide epitaxial reactor[J]. ECS Journal of Solid State Science and Technology, 2016, 5(2):12-15.
[21] Fabrizio R, Patrick F, Giuseppe G, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices[J]. Microelectronic Engineering, 2018(187/188):66-77.
文章导航

/