研究论文

基于BOTDR技术的OPGW线廊环境灾变监测应用

  • 李军 ,
  • 李岩
展开
  • 1. 中移铁通有限公司, 北京 100038;
    2. 国网辽宁省电力有限公司超高压分公司, 沈阳 110003
李军,高级工程师,研究方向为通信测试,电子信箱:lijun@cmtt.chinamobile.com

收稿日期: 2022-05-12

  修回日期: 2022-07-31

  网络出版日期: 2022-09-13

Application of environmental disaster monitoring of OPGW corridor based on BOTDR technology

  • LI Jun ,
  • LI Yan
Expand
  • 1. China Mobile Tietong Co., Ltd., Beijing 100038, China;
    2. Super High Voltage Branch of State Grid Liaoning Electric Power Co., Ltd., Shenyang 110003, China

Received date: 2022-05-12

  Revised date: 2022-07-31

  Online published: 2022-09-13

摘要

极端天气下光纤复合架空地线(OPGW)电缆状态的在线监测对电力通信系统的安全运行和预警具有重要意义。综述了布里渊光时域反射(BOTDR)技术监测线缆温度和应变的基本原理,分析了其应用到电力灾变检测中的可行性,结合具体应用场景以及在现场运行的BOTDR系统对实际OPGW线缆的监测情况,通过理论和实际案例验证了利用BOTDR技术的测试装置对OPGW线路及周边环境实时监测的方法的可行性,能够有效满足电路线廊环境灾变监测的需求。

本文引用格式

李军 , 李岩 . 基于BOTDR技术的OPGW线廊环境灾变监测应用[J]. 科技导报, 2022 , 40(15) : 104 -112 . DOI: 10.3981/j.issn.1000-7857.2022.15.010

Abstract

The on-line monitoring of optical fiber composite overhead ground cable (OPGW) under extreme weather conditions is of great significance to the safe operation and early warning of power communication system.The basic principle of monitoring cable temperature and strain based on Brillouin optical time-domain reflectometry (BOTDR) technology is reviewed,and the feasibility of its application to power disaster detection is analyzed.Moreover,combined with the specific application scenarios and monitoring situation of operating OPGW cables with BOTDR system in the field,a method for real-time monitoring OPGW lines and surrounding environment using BOTDR technology test device is verified in both theory and practice,which can effectively meet the needs of environmental disaster monitoring of electrical route corridor.

参考文献

[1] 曹孟辉,陈点,夏辉. BOTDR布里渊谱拟合方法改进研究[J].电子元器件与信息技术, 2021, 5(8):188-190.
[2] 黄晓维,郑建国,于永堂,等. BOTDR分布式光纤传感技术在桩基测试中的应用研究[J].岩土工程技术, 2021, 35(5):281-285, 293.
[3] 陈芳,李子凡,李伯中,等. OPGW光缆覆冰监测与纤芯应变分析[J].电力信息与通信技术, 2020, 18(10):48-52.
[4] 陈磊,詹跃东,田庆生.基于BOTDR分布式传感系统的研究[J].仪表技术与传感器, 2019(6):96-100.
[5] Yan H. Discussion on monitoring of icing status of high voltage transmission lines based on optical fiber sensing technology[J]. Low Carbon World, 2016(25):50-51.
[6] Huang W Q, Yao Z H, Liang W, et al. Data mining evaluation of reliability of overhead line iced tension tensor[C]//International Conference on Power System Technology. Piscataway, NJ:IEEE, 2018:3206-3212.
[7] Ji K P, Rui X M, Lin L, et al. Dynamic response of iced overhead electric transmission lines following cable rupture shock and induced ice shedding[J]. IEEE Transactions on Power Delivery, 2016, 31(5):2215-2222.
[8] Huang X B, Zhang F, Li H S, et al. An online technology for measuring icing shape on conductor based on vision and force sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 12(66):3180-3189.
[9] Lü Z, Hou H, Yi Z, et al. Grey prediction model application in early warning of ice-coating lines[C]//International Conference on Recent Developments in Control, Automation and Power Engineering. Piscataway, NJ:IEEE, 2015:119-122.
[10] Qiang L G, Xiao G H. Power line icing monitoring method using binocular stereo vision[C]//IEEE Conference on Industrial Electronics and Applications. Piscataway, NJ:IEEE, 2017:1905-1908.
[11] 范海军,李永倩,张立欣,等.基于BOTDR的多模光纤温度传感[J].激光杂志, 2022, 43(1):74-80.
[12] 史尊伟.基于BOTDR技术的架空输电线路监测系统研制与试验研究[D].广州:华南理工大学, 2015.
[13] Leal-Junior Arnaldo G, Theodosiou A, Marques C, et al. Compensation method for temperature cross-sensitivity in transverse force applications with FBG sensors in POFs[J]. Journal of Lightwave Technology, 2018, 36(17):3660-3665.
[14] 白清. BOTDR系统性能提升关键技术研究[D].太原:太原理工大学, 2019.
[15] 陈拽霞,王颖,姜辉,等.电力OPGW光缆覆冰性能研究及在线监测技术应用[J].软件, 2020, 41(1):152-155.
[16] 李浩,王峰,周霄,等.基于布里渊光时域反射计的紧套型OPGW覆冰厚度监测[J].光子学报, 2021, 50(11):80-87.
[17] 范鹏,王海涛,张雪峰,等.基于BOTDR的OPGW应变实验研究[J].光通信技术, 2015, 39(4):60-62.
[18] 朱辉,周洋,邵玮炜. Φ-OTDR分布式光纤传感器的振动应变监测[J].指挥信息系统与技术, 2020, 11(2):74-79.
[19] 杨纯,李垠韬,宋伟,等. Φ-OTDR光纤传感电缆防外破监测数据预处理方法[J].激光与红外, 2021, 51(4):486-492.
[20] Zhang J, Li W. The study on the novel distributed vibration sensing system based on the adjacent FBGs reflected lights interference[J]. Optik, 2018, 169:85-95.
[21] Zhang X P, Wang Q, Xiong F, et al. Performance enhancement method for phase-sensitive optical time-domain reflectometer system based on suppression of fading induced false alarms[J]. Optical Engineering, 2020, 59(4):046101.
[22] 覃兆宇,刘卫新,潘哲哲,等.光纤布里渊分布式输电线路覆冰识别技术[J].光电工程, 2016, 43(10):6-11.
[23] Zhang M, Xing Y M, Zhang Z G, et al. Design and experiment of FBG-based icing monitoring on overhead transmission lines with an improvement trial for windy weather[J]. Sensors, 2014(14):23954-23969.
文章导航

/