[1] Gao W, Emaminejad S, Nyein H Y Y, et al.Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J].Nature, 2016, 529(7587):509-514.
[2] Choi M K, Yang J, Kang K, et al.Wearable red-greenblue quantum dot light-emitting diode array using highresolution intaglio transfer printing[J].Nature Communications, 2015, 6:8.
[3] Yokota T, Zalar P, Kaltenbrunner M, et al.Ultraflexible organic photonic skin[J].Science Advances, 2016, 2(4):8.
[4] Cima M J.Next-generation wearable electronics[J].Nature Biotechnology, 2014, 32(7):642-643.
[5] Son D, Lee J, Qiao S, et al.Multifunctional wearable devices for diagnosis and therapy of movement disorders[J].Nature Nanotechnology, 2014, 9(5):397-404.
[6] Wang S H, Xu J, Wang W C, et al.Skin electronics from scalable fabrication of an intrinsically stretchable transistor array[J].Nature, 2018, 555(7694):83-88.
[7] Wu C S, Ding W B, Liu R Y, et al.Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array[J].Materials Today, 2018, 21(3):216-222.
[8] Chu S, Majumdar A.Opportunities and challenges for a sustainable energy future[J].Nature, 2012, 488(7411):294.
[9] Xue G B, Xu Y, Ding T P, et al.Water-evaporation-induced electricity with nanostructured carbon materials[J].Nature Nanotechnology, 2017, 12(4):317.
[10] Kim S H, Haines C S, Li N, et al.Harvesting electrical energy from carbon nanotube yarn twist[J].Science, 2017, 357(6353):773.
[11] Feng J D, Graf M, Liu K, et al.Single-layer MoS2 nanopores as nanopower generators[J].Nature, 2016, 536(7615):197-200.
[12] Wang Z L, Song J.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science, 2006, 312(5771):242-246.
[13] Bell L E.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J].Science, 2008, 321(5895):1457-1461.
[14] Luo D Y, Yang W Q, Wang Z P, et al.Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J].Science, 2018, 360(6396):1442-1446.
[15] Vats G, Kumar A, Ortega N, et al.Pyroelectric control of magnetization for tuning thermomagnetic energy conversion and magnetocaloric effect[J].Energy & Environmental Science, 2016, 9(7):2383-2391.
[16] Fan F R, Tian Z Q, Wang Z L.Flexible triboelectric generator[J].Nano Energy, 2012, 1(2):328-334.
[17] Zi Y L, Lin L, Wang J, et al.Triboelectric-pyroelectricpiezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing[J].Advanced Materials, 2015, 27(14):2340-2347.
[18] Guo H Y, Chen J, Yeh M H, et al.An ultrarobust highperformance triboelectric nanogenerator based on charge replenishment[J].ACS Nano, 2015, 9(5):5577-5584.
[19] Zheng L, Cheng G, Chen J, et al.A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock[J].Advanced Energy Materials, 2015, 5(21):15011152.
[20] Yi F, Lin L, Niu S, et al.Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors[J].Advanced Functional Materials, 2015, 25(24):3688-3696.
[21] Yi F, Lin L, Niu S, et al.Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor[J].Advanced Functional Materials, 2015, 24(47):7488-7494.
[22] Lee K Y, Gupta M K, Kim S W.Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics[J].Nano Energy, 2015, 14:139-160.
[23] Wang J, Li X H, Zi Y L, et al.A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics[J].Advanced Materials, 2015, 27(33):4830-4836.
[24] Cheng X L, Meng B, Zhang X S, et al.Wearable electrode-free triboelectric generator for harvesting biomechanical energy[J].Nano Energy, 2015, 12:19-25.
[25] Zhu G, Chen J, Zhang T J, et al.Radial-arrayed rotary electrification for high performance triboelectric generator[J].Nature Communications, 2014, 5(1):3426.
[26] 张弛, 付贤鹏, 王中林.摩擦纳米发电机在自驱动微系统研究中的现状与展望[J].机械工程学报, 2019, 55(7):89-101.
[27] Jing Q, Xie Y, Zhu G, et al.Self-powered thin-film motion vector sensor[J].Nature Communications, 2015, 6:8031.
[28] Wang S, Lin L, Wang Z L.Triboelectric nanogenerators as self-powered active sensors[J].Nano Energy, 2015, 11:436-462.
[29] Meng B, Tang W, Too Z, et al.A transparent single-friction-surface triboelectric generator and self-powered touch sensor[J].Energy & Environmental Science, 2013, 6(11):3235-3240.
[30] Niu S, Wang X, Yi F, et al.A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics[J].Nature Communications, 2015, 6(1):8975.
[31] 王中林, 陈鹏飞.从物联网时代的高熵能源到迈向碳中和的蓝色大能源——接触起电的物理机理与摩擦纳米发电机的科学构架[J].物理, 2021, 50(10):649-662.
[32] 王雪, 胡陈果, 韩忠.用于风能和海洋能收集的摩擦纳米发电机研究进展[J].物理实验, 2021, 41(6):1-16.
[33] Wang Z L.On Maxwell's displacement current for energy and sensors:The origin of nanogenerators[J].Materials Today, 2017, 20(2):74-82.
[34] Wang Z L.Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J].ACS Nano, 2013, 7(11):9533.
[35] Zi Y L, Niu S M, Wang J, et al.Standards and figureof-merits for quantifying the performance of triboelectric nanogenerators[J].Nature Communications, 2015, 6:8.
[36] Zhong J, Zhong Q, Fan F, et al.Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs[J].Nano Energy, 2013, 2(4):491-497.
[37] Zhu G, Lin Z H, Jing Q S, et al.Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator[J].Nano Letters, 2013, 13(2):847-853.
[38] Zhang X S, Han M D, Wang R X, et al.High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment[J].Nano Energy, 2014, 4:123-131.
[39] Cheng G, Lin Z H, Lin L, et al.Pulsed nanogenerator with huge instantaneous output power density[J].ACS Nano, 2013, 7(8):7383-7391.
[40] Lin Z H, Xie Y, Yang Y, et al.Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials[J].ACS Nano, 2013, 7(5):4554-4560.
[41] Han S S, Ko Y J, Dong Y K, et al.Enhanced triboelectric charge through a facile hydrothermal treatment of electrode[J].Current Applied Physics, 2016, 16(10):1364-1368.
[42] Wang J, Wen Z, Zi Y L, et al.All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors[J].Advanced Functional Materials, 2016, 26(7):1070-1076.
[43] Cui N, Gu L, Lei Y, et al.Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator[J].ACS Nano, 2016, 10(6):6131-6138.
[44] Lai M H, Du B L, Guo H Y, et al.Enhancing the output charge density of TENG via building longitudinal paths of electrostatic charges in the contacting layers[J].ACS Applied Materials & Interfaces, 2018, 10(2):2158-2165.
[45] Wang S H, Zi Y L, Zhou Y S, et al.Molecular surface functionalization to enhance the power output of triboelectric nanogenerators[J].Journal of Materials Chemistry A, 2016, 4(10):3728-3734.
[46] Wang S H, Xie Y N, Niu S M, et al.Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection:Methodology and theoretical understanding[J].Advanced Materials, 2014, 26(39):6720-6728.
[47] Wang J, Li S M, Yi F, et al.Sustainably powering wearable electronics solely by biomechanical energy[J].Nature Communications, 2016, 7(1):12744.
[48] Lin S Q, Xu L, Tang W, et al.Electron transfer in nanoscale contact electrification:Atmosphere effect on the surface states of dielectrics[J].Nano Energy, 2019, 65:103956.
[49] Wang J, Wu C S, Dai Y J, et al.Achieving ultrahigh triboelectric charge density for efficient energy harvesting[J].Nature Communications, 2017, 8(1):88.
[50] Fu J J, Xu G Q, Li C H, et al.Achieving ultrahigh output energy density of triboelectric nanogenerators in high-pressure gas environment[J].Advanced Science, 2020, 7(24):2001757.
[51] Zhang C L, Zhou L L, Cheng P, et al.Surface charge density of triboelectric nanogenerators:Theoretical boundary and optimization methodology[J].Applied Materials Today, 2020, 18:100496.
[52] Li Y H, Zhao Z H, Liu L, et al.Improved output performance of triboelectric nanogenerator by fast accumulation process of surface charges[J].Advanced Energy Materials, 2021, 11(14):2100050.
[53] Xu L, Bu T Z, Yang X D, et al.Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators[J].Nano Energy, 2018, 49:625-633.
[54] Liu W L, Wang Z, Wang G, et al.Integrated charge excitation triboelectric nanogenerator[J].Nature Communications, 2019, 10(1):1426.
[55] Liu Y K, Liu W L, Wang Z, et al.Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density[J].Nature Communications, 2020, 11(1):1599.