专题:压电电子学及纳米发电机

摩擦纳米发电机表面电荷密度研究进展

  • 周灵琳 ,
  • 王杰 ,
  • 王中林
展开
  • 中国科学院北京纳米能源与系统研究所, 北京 101400
周灵琳,助理研究员,研究方向为摩擦纳米发电机,电子信箱:zhoulinglin@binn.cas.cn

收稿日期: 2021-09-11

  修回日期: 2022-08-14

  网络出版日期: 2022-10-19

基金资助

国家自然科学基金项目(61774016)

Advance of study on surface charge density of triboelectric nanogenerators

  • ZHOU Linglin ,
  • WANG Jie ,
  • WANG Zhonglin
Expand
  • Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China

Received date: 2021-09-11

  Revised date: 2022-08-14

  Online published: 2022-10-19

摘要

纳米摩擦发电机可以收集环境中不同形式的机械能,在自驱动系统、物联网和蓝色能源等方面具有巨大的潜在应用价值。作为能量器件,纳米摩擦发电机的实际应用在于进一步提高功率输出,其核心在于提高摩擦电荷密度。介绍了提高摩擦表面电荷密度的技术方法,综述了提高摩擦纳米发电机电荷密度的研究进展。同时,以接触-分离模式的摩擦纳米发电机为例,探索了摩擦表面电荷密度的影响因素和改进措施,以为实现摩擦纳米发电机超高电荷密度提供新的研究方向。

本文引用格式

周灵琳 , 王杰 , 王中林 . 摩擦纳米发电机表面电荷密度研究进展[J]. 科技导报, 2022 , 40(17) : 24 -35 . DOI: 10.3981/j.issn.1000-7857.2022.17.003

Abstract

As a promising technology to harvest different forms of mechanical energy from environment, triboelectric nanogenerators (TENGs) have great potential application in self-powered sensor, Internet of Things, and large-scale renewable blue energy. For application it is important to further enhance the output power density and efficiency, which depend on the triboelectric charge density quadratically. In this paper, we briefly introduce the approach to improve the charge density and review the progress of achieving ultrahigh triboelectric charge density. In addition, the restricting factors and limitation of triboelectric charge density are investigated by taking Cu-PTFE as the contact surface of TENG as an example, which could provide a research direction for achieving ultra-high charge density of TENG.

参考文献

[1] Gao W, Emaminejad S, Nyein H Y Y, et al.Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J].Nature, 2016, 529(7587):509-514.
[2] Choi M K, Yang J, Kang K, et al.Wearable red-greenblue quantum dot light-emitting diode array using highresolution intaglio transfer printing[J].Nature Communications, 2015, 6:8.
[3] Yokota T, Zalar P, Kaltenbrunner M, et al.Ultraflexible organic photonic skin[J].Science Advances, 2016, 2(4):8.
[4] Cima M J.Next-generation wearable electronics[J].Nature Biotechnology, 2014, 32(7):642-643.
[5] Son D, Lee J, Qiao S, et al.Multifunctional wearable devices for diagnosis and therapy of movement disorders[J].Nature Nanotechnology, 2014, 9(5):397-404.
[6] Wang S H, Xu J, Wang W C, et al.Skin electronics from scalable fabrication of an intrinsically stretchable transistor array[J].Nature, 2018, 555(7694):83-88.
[7] Wu C S, Ding W B, Liu R Y, et al.Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array[J].Materials Today, 2018, 21(3):216-222.
[8] Chu S, Majumdar A.Opportunities and challenges for a sustainable energy future[J].Nature, 2012, 488(7411):294.
[9] Xue G B, Xu Y, Ding T P, et al.Water-evaporation-induced electricity with nanostructured carbon materials[J].Nature Nanotechnology, 2017, 12(4):317.
[10] Kim S H, Haines C S, Li N, et al.Harvesting electrical energy from carbon nanotube yarn twist[J].Science, 2017, 357(6353):773.
[11] Feng J D, Graf M, Liu K, et al.Single-layer MoS2 nanopores as nanopower generators[J].Nature, 2016, 536(7615):197-200.
[12] Wang Z L, Song J.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science, 2006, 312(5771):242-246.
[13] Bell L E.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J].Science, 2008, 321(5895):1457-1461.
[14] Luo D Y, Yang W Q, Wang Z P, et al.Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J].Science, 2018, 360(6396):1442-1446.
[15] Vats G, Kumar A, Ortega N, et al.Pyroelectric control of magnetization for tuning thermomagnetic energy conversion and magnetocaloric effect[J].Energy & Environmental Science, 2016, 9(7):2383-2391.
[16] Fan F R, Tian Z Q, Wang Z L.Flexible triboelectric generator[J].Nano Energy, 2012, 1(2):328-334.
[17] Zi Y L, Lin L, Wang J, et al.Triboelectric-pyroelectricpiezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing[J].Advanced Materials, 2015, 27(14):2340-2347.
[18] Guo H Y, Chen J, Yeh M H, et al.An ultrarobust highperformance triboelectric nanogenerator based on charge replenishment[J].ACS Nano, 2015, 9(5):5577-5584.
[19] Zheng L, Cheng G, Chen J, et al.A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock[J].Advanced Energy Materials, 2015, 5(21):15011152.
[20] Yi F, Lin L, Niu S, et al.Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors[J].Advanced Functional Materials, 2015, 25(24):3688-3696.
[21] Yi F, Lin L, Niu S, et al.Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor[J].Advanced Functional Materials, 2015, 24(47):7488-7494.
[22] Lee K Y, Gupta M K, Kim S W.Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics[J].Nano Energy, 2015, 14:139-160.
[23] Wang J, Li X H, Zi Y L, et al.A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics[J].Advanced Materials, 2015, 27(33):4830-4836.
[24] Cheng X L, Meng B, Zhang X S, et al.Wearable electrode-free triboelectric generator for harvesting biomechanical energy[J].Nano Energy, 2015, 12:19-25.
[25] Zhu G, Chen J, Zhang T J, et al.Radial-arrayed rotary electrification for high performance triboelectric generator[J].Nature Communications, 2014, 5(1):3426.
[26] 张弛, 付贤鹏, 王中林.摩擦纳米发电机在自驱动微系统研究中的现状与展望[J].机械工程学报, 2019, 55(7):89-101.
[27] Jing Q, Xie Y, Zhu G, et al.Self-powered thin-film motion vector sensor[J].Nature Communications, 2015, 6:8031.
[28] Wang S, Lin L, Wang Z L.Triboelectric nanogenerators as self-powered active sensors[J].Nano Energy, 2015, 11:436-462.
[29] Meng B, Tang W, Too Z, et al.A transparent single-friction-surface triboelectric generator and self-powered touch sensor[J].Energy & Environmental Science, 2013, 6(11):3235-3240.
[30] Niu S, Wang X, Yi F, et al.A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics[J].Nature Communications, 2015, 6(1):8975.
[31] 王中林, 陈鹏飞.从物联网时代的高熵能源到迈向碳中和的蓝色大能源——接触起电的物理机理与摩擦纳米发电机的科学构架[J].物理, 2021, 50(10):649-662.
[32] 王雪, 胡陈果, 韩忠.用于风能和海洋能收集的摩擦纳米发电机研究进展[J].物理实验, 2021, 41(6):1-16.
[33] Wang Z L.On Maxwell's displacement current for energy and sensors:The origin of nanogenerators[J].Materials Today, 2017, 20(2):74-82.
[34] Wang Z L.Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J].ACS Nano, 2013, 7(11):9533.
[35] Zi Y L, Niu S M, Wang J, et al.Standards and figureof-merits for quantifying the performance of triboelectric nanogenerators[J].Nature Communications, 2015, 6:8.
[36] Zhong J, Zhong Q, Fan F, et al.Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs[J].Nano Energy, 2013, 2(4):491-497.
[37] Zhu G, Lin Z H, Jing Q S, et al.Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator[J].Nano Letters, 2013, 13(2):847-853.
[38] Zhang X S, Han M D, Wang R X, et al.High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment[J].Nano Energy, 2014, 4:123-131.
[39] Cheng G, Lin Z H, Lin L, et al.Pulsed nanogenerator with huge instantaneous output power density[J].ACS Nano, 2013, 7(8):7383-7391.
[40] Lin Z H, Xie Y, Yang Y, et al.Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials[J].ACS Nano, 2013, 7(5):4554-4560.
[41] Han S S, Ko Y J, Dong Y K, et al.Enhanced triboelectric charge through a facile hydrothermal treatment of electrode[J].Current Applied Physics, 2016, 16(10):1364-1368.
[42] Wang J, Wen Z, Zi Y L, et al.All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors[J].Advanced Functional Materials, 2016, 26(7):1070-1076.
[43] Cui N, Gu L, Lei Y, et al.Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator[J].ACS Nano, 2016, 10(6):6131-6138.
[44] Lai M H, Du B L, Guo H Y, et al.Enhancing the output charge density of TENG via building longitudinal paths of electrostatic charges in the contacting layers[J].ACS Applied Materials & Interfaces, 2018, 10(2):2158-2165.
[45] Wang S H, Zi Y L, Zhou Y S, et al.Molecular surface functionalization to enhance the power output of triboelectric nanogenerators[J].Journal of Materials Chemistry A, 2016, 4(10):3728-3734.
[46] Wang S H, Xie Y N, Niu S M, et al.Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection:Methodology and theoretical understanding[J].Advanced Materials, 2014, 26(39):6720-6728.
[47] Wang J, Li S M, Yi F, et al.Sustainably powering wearable electronics solely by biomechanical energy[J].Nature Communications, 2016, 7(1):12744.
[48] Lin S Q, Xu L, Tang W, et al.Electron transfer in nanoscale contact electrification:Atmosphere effect on the surface states of dielectrics[J].Nano Energy, 2019, 65:103956.
[49] Wang J, Wu C S, Dai Y J, et al.Achieving ultrahigh triboelectric charge density for efficient energy harvesting[J].Nature Communications, 2017, 8(1):88.
[50] Fu J J, Xu G Q, Li C H, et al.Achieving ultrahigh output energy density of triboelectric nanogenerators in high-pressure gas environment[J].Advanced Science, 2020, 7(24):2001757.
[51] Zhang C L, Zhou L L, Cheng P, et al.Surface charge density of triboelectric nanogenerators:Theoretical boundary and optimization methodology[J].Applied Materials Today, 2020, 18:100496.
[52] Li Y H, Zhao Z H, Liu L, et al.Improved output performance of triboelectric nanogenerator by fast accumulation process of surface charges[J].Advanced Energy Materials, 2021, 11(14):2100050.
[53] Xu L, Bu T Z, Yang X D, et al.Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators[J].Nano Energy, 2018, 49:625-633.
[54] Liu W L, Wang Z, Wang G, et al.Integrated charge excitation triboelectric nanogenerator[J].Nature Communications, 2019, 10(1):1426.
[55] Liu Y K, Liu W L, Wang Z, et al.Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density[J].Nature Communications, 2020, 11(1):1599.
文章导航

/