专题:压电电子学及纳米发电机

摩擦纳米发电机在自驱动智能交通系统的应用研究进展

  • 靳龙 ,
  • 张磊 ,
  • 张彬彬 ,
  • 杨维清
展开
  • 西南交通大学材料科学与工程学院, 材料先进技术教育部重点实验室, 成都 611756
靳龙,博士研究生,研究方向为压电与摩擦电材料器件,电子信箱:longjin@swjtu.edu.cn

收稿日期: 2022-08-03

  修回日期: 2022-09-01

  网络出版日期: 2022-10-19

基金资助

四川省国际合作项目(2017HH0069)

Application and research progress of triboelectric nanogenerator in self driving intelligent transportation system

  • JIN Long ,
  • ZHANG Lei ,
  • ZHANG Binbin ,
  • YANG Weiqing
Expand
  • Key Laboratory of Advanced Technologies of Materials, Ministry of Education;School of Materials Science and Engineering, Southwest Jiaotong Univerdity, Chengdu 611756, China

Received date: 2022-08-03

  Revised date: 2022-09-01

  Online published: 2022-10-19

摘要

摩擦纳米发电机具有供电和高灵敏度传感的双重功能,能够在自驱动智能交通系统中发挥重要作用。综述了近年来摩擦纳米发电机在公路及铁路智能交通系统中的应用,包括车辆检测、尾气处理、振动能收集、风能收集等,分析了摩擦纳米发电机在智能交通系统应用过程中存在的挑战,展望了摩擦纳米发电机在材料、信息、电子、机械、交通等多学科交叉的发展趋势。

本文引用格式

靳龙 , 张磊 , 张彬彬 , 杨维清 . 摩擦纳米发电机在自驱动智能交通系统的应用研究进展[J]. 科技导报, 2022 , 40(17) : 63 -75 . DOI: 10.3981/j.issn.1000-7857.2022.17.006

Abstract

Highway and railway as one of the most important means of transportation have made rapid digitalized development but the power supply of sensors has become a bottleneck for further development. In this paper we illustrate that triboelectric nanogenerator (TENG) with dual functions of power supply and high-sensitive sensing plays an important role in self-powered intelligent transportation systems. We also review the application of TENG in intelligent transportation systems in recent years, including vehicle detection, exhaust gas treatment, vibration energy harvesting, wind energy harvesting, etc. Finally, we analyze the challenges for application of TENG in intelligent transportation and prospect the development trend of TENG in materials, information, electronics, machinery, transportation, and other multidisciplinary fields.

参考文献

[1] Chai J, Zhou Y H, Zhou X Y, et al.Analysis on shock effect of China's high-speed railway on aviation transport[J].Transportation Research Part A:Policy and Practice, 2018, 108:35-44.
[2] Xu W A, Zhou J, Yang L Y, et al.The implications of high-speed rail for Chinese cities connectivity and accessibility[J].Transportation Research Part A:Policy and Practice, 2018, 116:308-326.
[3] Rao Y R.Automatic smart parking system using internet of things[J].International Journal of Engineering Technology Science and Research, 2017, 4(5):2394-3386.
[4] Wang Z L, Song J H.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science, 2006, 312(5771):242-246.
[5] Fan F R, Tian Z Q, Wang Z L.Flexible triboelectric nanogenerator[J].Nano Energy, 2012, 1:328-334.
[6] Zhang X S, Han M D, Kim B, et al.All-in-one self-powered flexible microsystems based on triboelectric nanogenerators[J].Nano Energy, 2018, 47:410-426.
[7] Fan F R, Tang W, Wang Z L.Flexible nanogenerators for energy harvesting and self-powered electronics[J].Advanced Materials, 2016, 28(22):4283-4305.
[8] Zhu G, Peng B, Chen J, et al.Triboelectric nanogenerators as a new energy technology:From fundamentals, devices, to applications[J].Nano Energy, 2015, 14:126-138.
[9] Wang Z L.On Maxwell's displacement current for energy and sensors:The origin of nanogenerators[J].Materials Today, 2017, 20(2):74-82.
[10] Wang Z L, Chen J, Lin L.Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors[J].Energy & Environmental Science, 2015, 8(8):2250-2282.
[11] Cao X, Jie Y, Wang N, et al.Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science[J].Advanced Energy Materials, 2016, 6(23):1600665.
[12] Wang Z L.Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J].ACS Nano, 2013, 7(11):9533-9557.
[13] Xiong H C, Wang L B.Piezoelectric energy harvester for public roadway:On-site installation and evaluation[J].Applied Energy, 2016, 174:101-107.
[14] Wang S H, Lin L, Wang Z L.Triboelectric nanogenerators as self-powered active sensors[J].Nano Energy, 2015, 11:436-462.
[15] Niu S M, Wang Z L.Theoretical systems of triboelectric nanogenerators[J].Nano Energy, 2015, 14:161-192.
[16] Wang Z L.Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives[J].Faraday Discussions, 2014, 176:447-458.
[17] Yang W Q, Chen J, Zhu G, et al.Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator[J].Nano Research, 2013, 6(12):880-886.
[18] Zhu G, Yang W Q, Zhang T J, et al.Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification[J].Nano Letters, 2014, 14(6):3208-3213.
[19] Chen J, Zhu G, Yang W, et al.Harmonic-resonatorbased triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor[J].Advanced Materials, 2013, 25(42):6094-6099.
[20] Guo H Y, Leng Q, He X M, et al.A triboelectric generator based on checker-like interdigital electrodes with a sandwiched PET thin film for harvesting sliding energy in all directions[J].Advanced Energy Materials, 2015, 5(1):1400790.
[21] Fang H, Wu W Z, Song J H, et al.Controlled growth of aligned polymer nanowires[J].Journal of Physical Chemistry C, 2009, 113(38):16571-16574.
[22] Meng B, Tang W, Too Z H, et al.A transparent singlefriction-surface triboelectric generator and self-powered touch sensor[J].Energy & Environmental Science, 2013, 6(11):3235-3240.
[23] Wang H, Shi M Y, Zhu K, et al.High performance triboelectric nanogenerators with aligned carbon nanotubes[J].Nanoscale, 2016, 8(43):18489-18494.
[24] Huang T, Lu M X, Yu H, et al.Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide[J].Scientific Reports, 2015, 5(1):13942.
[25] Xia X N, Chen J, Liu G L, et al.Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator[J].Carbon, 2017, 111:569-576.
[26] Guo H Y, Yeh M H, Zi Y L, et al.Ultralight cut-paperbased self-charging power unit for self-powered portable electronic and medical systems[J].ACS Nano, 2017, 11(5):4475-4482.
[27] Bai P, Zhu G, Lin Z H, et al.Integrated multi layered triboelectric nanogenerator for harvesting biomechanical energy from human motions[J].ACS Nano, 2013, 7(4):3713-3719.
[28] Yang W Q, Chen J, Zhu G, et al.Harvesting energy from the natural vibration of human walking[J].ACS Nano, 2013, 7(12):11317-11324.
[29] Yang W, Chen J, Jing Q S, et al.3D stack integrated triboelectric nanogenerator for harvesting vibration energy[J].Advanced Functional Materials, 2014, 24(26):4090-4096.
[30] Chen, J, Yang J, Li Z, et al.Networks of triboelectric nanogenerators for harvesting water wave energy:A potential approach toward blue energy[J].ACS Nano, 2015, 9(3):3324-3331.
[31] Chung J, Lee S, Yong H, et al.Self-packaging elastic bellows-type triboelectric nanogenerator[J].Nano Energy, 2016, 20:84-93.
[32] Meng B, Tang W, Zhang X S, et al.Self-powered flexible printed circuit board with integrated triboelectric generator[J].Nano Energy, 2013, 2(6):1101-1106.
[33] Liu G L, Guo H Y, Chen L, et al.Double-inducedmode integrated triboelectric nanogenerator based on spring steel to maximize space utilization[J].Nano Research, 2016, 9(11):3355-3363.
[34] Wen X N, Yang W Q, Jing Q S, et al.Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves[J].ACS Nano, 2014, 8(7):7405-7412.
[35] Jin L, Chen J, Zhang B B, et al.Self-powered safety helmet based on hybridized nanogenerator for emergency[J].ACS Nano, 2016, 10(8):7874-7881.
[36] Bowen C R, Arafa M H.Energy harvesting technologies for tire pressure monitoring systems[J].Advanced Energy Materials, 2015, 5(7):1401787.
[37] Qian J G, Kim D S, Lee D W.On-vehicle triboelectric nanogenerator enabled self-powered sensor for tire pressure monitoring[J].Nano Energy, 2018, 49:126-136.
[38] Guo T, Liu G X, Pang Y K, et al.Compressible hexagonal-structured triboelectric nanogenerators for harvesting tire rotation energy[J].Extreme Mechanics Letters, 2018, 18:1-8.
[39] Askari H, Saadatnia Z, Khajepour A, et al.A triboelectric self-powered sensor for tire condition monitoring:Concept, design, fabrication, and experiments[J].Advanced Engineering Materials, 2017, 19(12):1700318.
[40] Han C B, Du W M, Zhang C, et al.Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes[J].Nano Energy, 2014, 6:59-65.
[41] Chandrasekhar A, Alluri N R, Saravanakumar B, et al.Human interactive triboelectric nanogenerator as a selfpowered smart seat[J].ACS Applied Materials & Interfaces, 2016, 8(15):9692-9699.
[42] Zhang B B, Zhang L, Deng W L, et al.Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring[J].ACS Nano, 2017, 11(7):7440-7446.
[43] Pang Y K, Li X H, Chen M X, et al.Triboelectric nanogenerators as a self-powered 3D acceleration sensor[J].ACS Applied Materials & Interfaces, 2015, 7(34):19076-19082.
[44] 施毓凤, 杨晟, 孙力彤.城市轨道交通的安全管理问题[J].城市轨道交通研究, 2003(2):26-28.
[45] 何理, 钟茂华, 邓云峰.城市轨道交通危险因素分析[J].中国安全生产科学技术, 2005, 1(3):25-29.
[46] Meng X Y, Cheng Q, Jiang X B, et al.Triboelectric nanogenerator as a highly sensitive self-powered sensor for driver behavior monitoring[J].Nano Energy, 2018, 51:721-727.
[47] Wang J, Zhang H L, Xie Y H, et al.Smart network node based on hybrid nanogenerator for self-powered multifunctional sensing[J].Nano Energy, 2017, 33:418-426.
[48] Zhang B B, Chen J, Jin L, et al.Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors[J].ACS Nano, 2016, 10(6):6241-6247.
[49] Lin L, Hu Y F, Xu C, et al.Transparent flexible nanogenerator as self-powered sensor for transportation monitoring[J].Nano Energy, 2013, 2(1):75-81.
[50] Askari H, Asadi E, Saadatnia Z, et al.A hybridized electromagnetic-triboelectric self-powered sensor for traffic monitoring:Concept, modelling, and optimization[J].Nano Energy, 2017, 32:105-116.
[51] Zhang L, Jin L, Zhang B B, et al.Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy[J].Nano Energy, 2015, 16:516-523.
[52] Mao Y C, Geng D L, Liang E J, et al.Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires[J].Nano Energy, 2015, 15:227-234.
[53] Bai Y, Han C B, He C, et al.Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal[J].Advanced Functional Materials, 2018, 28(15):1706680.
[54] Gu G Q, Han C B, Lu C X, et al.Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal[J].ACS Nano, 2017, 11(6):6211-6217.
[55] Gu G Q, Han C B, Tian J J, et al.Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter[J].Nano Research, 2018, 11(8):4090-4101.
[56] He C, Wang Z L.Triboelectric nanogenerator as a new technology for effective PM2.5 removing with zero ozone emission[J].Progress in Natural Science:Materials International, 2018, 28(2):99-112.
[57] Ma M Y, Zhang Z, Liao Q L, et al.Integrated hybrid nanogenerator for gas energy recycle and purification[J].Nano Energy, 2017, 39:524-531.
[58] Han C B, Jiang T, Zhang C, et al.Removal of particulate matter emissions from a vehicle using a self-powered triboelectric filter[J].ACS Nano, 2015, 9(12):12552-12561.
[59] Shen Q Q, Xie X K, Peng M F, et al.Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects[J].Advanced Functional Materials, 2018, 28(10):1703420.
[60] Jiao J, Wang J, Jin F.Impacts of high-speed rail lines on the city network in China[J].Journal of Transport Geography, 2017, 60:257-266.
[61] Nellore K, Hancke Gerhard P.A Survey on urban traffic management system using wireless sensor networks[J].Sensors, 2016, 16(2):1-25.
[62] Lederman G, Chen S H, Garrett J H, et al.Track monitoring from the dynamic response of a passing train:A sparse approach[J].Mechanical Systems and Signal Processing, 2017, 90:141-153.
[63] Ahn D, Choi K.Performance evaluation of thermoelectric energy harvesting system on operating rolling stock[J].Micromachines, 2018, 9(7):359.
[64] Gatti G, Brennan M J, Tehrani M G, et al.Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator[J].Mechanical Systems and Signal Processing, 2016, 66/67:785-792.
[65] Jin L, Zhang S L, Xu S X, et al.Free-fixed rotational triboelectric nanogenerator for self-powered real-time wheel monitoring[J].Advanced Materials Technologies, 2021, 6(3):2000918.
[66] Zhao X J, Wei G W, Li X H, et al.Self-powered triboelectric nano vibration accelerometer based wireless sensor system for railway state health monitoring[J].Nano Energy, 2017, 34:549-555.
[67] Zhang Z X, He J, Wen T, et al.Magnetically levitatedtriboelectric nanogenerator as a self-powered vibration monitoring sensor[J].Nano Energy, 2017, 33:88-97.
[68] Hu Y F, Yang J, Niu S M, et al.Hybridizing triboelectrification and electromagnetic induction effects for highefficient mechanical energy harvesting[J].ACS Nano, 2014, 8(7):7442-7450.
[69] Jin L, Deng W L, Su Y C, et al.Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system[J].Nano Energy, 2017, 38:185-192.
[70] 刘妮娜, 王永录.轨道扣件智能检测系统的设计及应用[J].高速铁路技术, 2016, 7(4):55-59.
[71] Bayrashev A, Parker A, Robbins W P, et al.Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites[J].Sensors and Actuators A, 2004, 114:244-249.
[72] 刘维宁, 夏末, 郭文军.地铁列车振动的环境响应[J].岩石力学与工程学报, 1996, 15(增刊1):586-593.
[73] Bian Y X, Jiang T, Xiao T X, et al.Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel[J].Advanced Materials Technologies, 2018, 3(3):1700317.
[74] Zhang L, Zhang B B, Chen J, et al.Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops[J].Advanced Materials, 2015, 28(8):1650-1656.
[75] Seol M L, Woo J H, Jeon S B, et al.Vertically stacked thin triboelectric nanogenerator for wind energy harvesting[J].Nano Energy, 2015, 14:201-208.
[76] Huang L B, Xu W, Bai G X, et al.Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator[J].Nano Energy, 2016, 30:36-42.
[77] Ren X H, Fan H Q, Wang C, et al.Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting[J].Nano Energy, 2018, 50:562-570.
[78] Zhang C G, Liu Y B, Zhang B F, et al.Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system[J].ACS Energy Letters, 2021, 6(4):1490-1499.
[79] Yang Y, Zhu G, Zhang H L, et al.Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system[J].ACS Nano, 2013, 7(10):9461-9468.
文章导航

/