专题:压电电子学及纳米发电机

穿戴电子可拉伸材料的制备与应用

  • 潘晓君 ,
  • 鲍容容 ,
  • 潘曹峰
展开
  • 1. 广西大学物理科学与技术学院纳米能源研究中心, 南宁 530004;
    2. 中国科学院北京纳米能源与纳米系统研究所, 北京 100083;
    3. 中国科学院大学纳米科学与技术学院, 北京 100049
潘晓君,硕士研究生,研究方向为柔性触觉传感器阵列及其在可穿戴电子中的应用,电子信箱:panxiaojun@binn.cas.cn

收稿日期: 2020-10-29

  修回日期: 2021-08-03

  网络出版日期: 2022-10-19

基金资助

国家自然科学基金项目(51622205,61675027);科技部国家重点研发计划重点专项(2016YFA0202703);北京市自然科学基金项目(4181004,4184110,2184131);北京市科技计划项目(Z171100002017019,Z181100004418004)

Preparation and application of stretchable materials

  • PAN Xiaojun ,
  • BAO Rongrong ,
  • PAN Caofeng
Expand
  • 1. Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, China;
    2. CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China;
    3. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-10-29

  Revised date: 2021-08-03

  Online published: 2022-10-19

摘要

可拉伸材料的出现解决了智能设备的刚性问题,使得智能设备能够实现柔弹性。综述了超薄材料、织物以及生物可降解材料等可拉伸材料的最新研究进展与发展方向,包括超薄材料、织物材料、生物可降解材料等;介绍了可拉伸材料在可拉伸电极、储能设备及晶体管传感器等方面的应用;指出可拉伸材料存在材料导电性和拉伸性的平衡问题、可拉伸电极的不透气性和舒适度较差问题,探讨了其未来发展的机遇与面临的挑战。

本文引用格式

潘晓君 , 鲍容容 , 潘曹峰 . 穿戴电子可拉伸材料的制备与应用[J]. 科技导报, 2022 , 40(17) : 76 -93 . DOI: 10.3981/j.issn.1000-7857.2022.17.007

Abstract

With the development and progress of science and technology, the demand of stretchable materials in intelligent robot, electronic skin and other field is increasing. The emergence of stretchable materials can solve the problem of rigidity of intelligent devices and enable intelligent devices to achieve complete flexibility and stretchability. In this paper, some novel stretchable materials such as ultra-thin materials, fabrics and biodegradable materials at present are reviewed, and applications of stretchable materials in stretchable electrodes, energy storage devices and transistor sensors are briefly introduced. It is pointed out that there are some problems in the balance between the conductivity and the extensibility of the tensile material, and the poor air impermeability and comfort of the tensile electrode. Finally, opportunities and challenges in the future are discussed.

参考文献

[1] Buganza T A, Gosain A K, Kuhl E.Stretching skin:The physiological limit and beyond[J].International Journal of Non-Linear Mechanics, 2012, 47(8):938-949.
[2] He J, Zhang Y F, Zhou R H, et al.Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects[J].Journal of Materiomics, 2020, 6(1):86-101.
[3] Xu W N, Kwok K, Gracias D.Ultrathin shape change smart materials[J].Accounts of Chemical Research, 2018, 51(2):436-444.
[4] Weng W, Chen P N, He S S, et al.Smart electronic textiles[J].Angewandte Chemie International Edition, 2016, 55(21):6140-6169.
[5] Chen X, Ahn J H.Biodegradable and bioabsorbable sensors based on two-dimensional materials[J].Journal of Materials Chemistry B, 2020, 8(6):1082-1092.
[6] Li J, Bao R R, Tao J, et al.Recent progress in flexible pressure sensor arrays:From design to applications[J].Journal of Materials Chemistry C, 2018, 6(44):11878-11892.
[7] Choi Y S, Gwak M J, Lee D W.Polymeric cantilever integrated with PDMS/graphene composite strain sensor[J].Review of Scientific Instruments, 2016, 87(10):105004.
[8] Qin Y Y, Peng Q Y, Ding Y J, et al.Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J].ACS Nano, 2015, 9(9):8933-8941.
[9] Huang Y, Zeng X, Wang W D, et al.High-resolution flexible temperature sensor based graphite-filled polyethylene oxide and polyvinylidene fluoride composites for body temperature monitoring[J].Sensors and Actuators A:Physical, 2018, 278(1):1-10.
[10] Rashid I, Irfan M, Gill Y, et al.Stretchable strain sensors based on polyaniline/thermoplastic polyurethane blends[J].Polymer Bulletin, 2020, 77(3):1081-1093.
[11] Mannsfeld S, Tee B, Stoltenberg R, et al.Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J].Nature Materials, 2010, 9(10):859-864.
[12] Wang X W, Gu Y, Xiong Z P, et al.Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J].Advanced Materials, 2013, 26(9):1336-1342.
[13] He J, Xiao P, Lu W, et al.A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor[J].Nano Energy, 2019, 59:422-433.
[14] Chen J W, Zhu Y T, Jiang W.A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer[J].Composites Science and Technology, 2020, 186(20):107938.
[15] Ashizawa M, Zheng Y, Tran H, et al.Intrinsically stretchable conjugated polymer semiconductors in field effect transistors[J].Progress in Polymer Science, 2019, 100:101181.
[16] Rao V, Shauloff N, Sui X, et al.Polydiacetylene hydrogel self-healing capacitive strain sensor[J].Journal of Materials Chemistry C, 2020, 8(18):6034-6041.
[17] Wang J, Tang F, Wang Y, et al.Self-healing and highly stretchable gelatin hydrogel for self-powered strain sensor[J].ACS Applied Materials & Interfaces, 2020, 12(1):1558-1566.
[18] Wang S L, Nie Y Y, Zhu H U, et al.Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs[J].Science Advances, 2022, 8(13):eabl5511.
[19] Lee G H, Lee Y R, Kim H, et al.Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics[J].Nature Communications, 2022, 13:2463.
[20] Sun Y G, Choi W M, Jiang H Q, et al.Controlled buckling of semiconductor nanoribbons for stretchable electronics[J].Nature Nanotechnology, 2006, 1(3):201-207.
[21] Weng W, Sun Q, Zhang Y, et al.A gum-like lithiumion battery based on a novel arched structure[J].Advanced Materials, 2015, 27(8):1363-1369.
[22] Zhao X L, Hua Q L, Yu R M, et al.Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping[J].Advanced Electronic Materials, 2015, 1(7):1500142.
[23] Mamidanna A, Song Z, Lü C, et al.Printing stretchable spiral interconnects using reactive ink chemistries[J].ACS Applied Materials & Interfaces, 2016, 8(20):12594-12598.
[24] Hua Q L, Sun J L, Liu H T, et al.Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing[J].Nature Communications, 2018, 9(1):244.
[25] Li S, Liu G, Li R, et al.Contact-Resistance-Free stretchable strain sensors with high repeatability and linearity[J].ACS Nano, 2022, 16(1):541-553.
[26] Tao J, Dong M, Li L, et al.Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer[J].Microsystem & Nanoengineering, 2020, 6(1):62.
[27] Kim M K, Kim M S, Kwon H B, et al.Wearable triboelectric nanogenerator using a plasma-etched PDMSCNT composite for a physical activity sensor[J].RSC Advances, 2017, 7(76):48368-48373.
[28] Puneetha P, Mallem S, Lee Y, et al.Strain-controlled flexible Graphene/GaN/PDMS sensors based on the piezotronic effect[J].ACS Applied Materials & Interfaces, 2020, 12(32):36660-36669.
[29] Lee W S, Yeo K S, Andriyana A, et al.Effect of cyclic compression and curing agent concentration on the stabilization of mechanical properties of PDMS elastomer[J].Materials & Design, 2016, 96:470-475.
[30] Xia T, Yuwen H J, Lin N.Self-bonding sandwiched membranes from PDMS and cellulose nanocrystals by engineering strategy of layer-by-layer curing[J].Composites Science and Technology, 2018, 161:8-15.
[31] Keulemans G, Ceyssens F, Puers R.An ionic liquid based strain sensor for large displacement measurement[J].Biomed Microdevices, 2017, 19:1.
[32] He Q, Vokoun D, Stalbaum T, et al.Mechanoelectric transduction of ionic polymer-graphene composite sensor with ionic liquid as electrolyte[J].Sensors and Actuators A:Physical, 2019, 286:68-77.
[33] Li J, Bao R R, Tao J, et al.Visually aided tactile enhancement system based on ultrathin highly sensitive crack-based strain sensors[J].Applied Physics Reviews, 2020, 7(1):011404.
[34] Hyun D, Park M, Park C, et al.Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes[J].Advanced Materials, 2011, 23(26):2946-2950.
[35] Zhang Y Z, Lee K H, Anjum D H, et al.MXenes stretch hydrogel sensor performance to new limits[J].Science Advances, 2018, 4(6):6.
[36] Nur R, Matsuhisa N, Jiang Z, et al.A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films[J].Nano Letters, 2018, 18(9):5610-5617.
[37] Ha C J, Park B G, Suk O M, et al.Photo-induced fabrication of Ag nanowire circuitry for invisible, ultrathin, conformable pressure sensors[J].Journal of Materials Chemistry C, 2017, 5(38):9986-9994.
[38] Lee S W, Reuveny A, Reeder J, et al.A transparent bending-insensitive pressure sensor[J].Nature Nanotechnology, 2016, 11(5):472-478.
[39] Zhang Q, Wang Q, Wang G, et al.Ultrathin and highly tough hydrogel films for multifunctional strain sensors[J].ACS Applied Materials & Interfaces, 2021, 13(42):50411-50421.
[40] Wang L, Chen Y, Lin L W, et al.Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite[J].Chemical Engineering Journal, 2019, 362:89-98.
[41] Wang X D, Zhang Y F, Zhang X J, et al.A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics[J].Advanced Materials, 2018, 30(12):1706738.
[42] Kim H, Shaqeel A, Han S, et al.In situ formation of Ag nanoparticles for fiber strain sensors:Toward textilebased wearable applications[J].ACS Applied Materials & Interfaces, 2021, 13(33):39868-39879.
[43] Wu X D, Han Y Y, Zhang X X, et al.Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring[J].ACS Applied Materials & Interfaces, 2016, 8(15):9936-9945.
[44] Jia Y H, Shen L L, Liu J, et al.An efficient PEDOTcoated textile for wearable thermoelectric generators and strain sensors[J].Journal of Materials Chemistry C, 2019, 7(12):3496-3502.
[45] Boutry C, Kaizawa Y, Schroeder B, et al.A stretchable and biodegradable strain and pressure sensor for orthopaedic application[J].Nature Electronics, 2018, 1(5):314-321.
[46] Wan S, Zhu Z H, Yin K B, et al.A highly skin-conformal and biodegradable graphene-based strain sensor[J].Small Methods, 2018, 2(10):1700374.
[47] Hou C, Xu Z J, Qiu W, et al.A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection[J].Small, 2019, 15(11):1805084.
[48] Liu Y, Tao J, Yang W K, et al.Biodegradable, breathable leaf vein-based tactile sensors with tunable sensitivity and sensing range[J].Small, 2022, 18(8):2106906.
[49] Zhang S F, Li Y W, Tian Q Y, et al.Highly conductive, flexible and stretchable conductors based on fractal silver nanostructures[J].Journal of Materials Chemistry C, 2018, 6(15):3999-4006.
[50] Hong J, Kim W, Choi D, et al.Omnidirectionally stretchable and transparent graphene electrodes[J].ACS Nano, 2016, 10(10):9466-9455.
[51] Fang Y S, Li Y, Wang X, et al.Cryo-transferred ultrathin and stretchable epidermal electrodes[J].Small, 2020, 16(28):2000450.
[52] Cao J, Liang F, Li H Y, et al.Ultra-robust stretchable electrode for e-skin:In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction[J].Infomation Materials, 2022, 4(4):e12302.
[53] Meng X C, Xing Z, Hu X T, et al.Stretchable perovskite solar cells with recoverable performance[J].Angewandte Chemie International Edition, 2020, 59(38):16602-16608.
[54] Rhee R, Im S, Lee H, et al.Stretchable hole extraction layer for improved stability in perovskite solar cells[J].ACS Sustainable Chemistry & Engineering, 2020, 8(21):8004-8010.
[55] Sun J L, Hua Q L, Zhou R R, et al.Piezo-phototronic effect enhanced efficient flexible perovskite solar cells[J].ACS Nano, 2019, 13(4):4507-4513.
[56] Li H, Wang W N, Yang Y, et al.Kirigami-Based highly stretchable thin film solar cells that are mechanically stable for more than 1000 cycles[J].ACS Nano, 2020, 14(2):1560-1568.
[57] Zang J F, Cao C Y, Feng Y Y, et al.Stretchable and high-performance supercapacitors with crumpled graphene papers[J].Scientific Reports, 2014, 4:6492.
[58] Chang P, Mei H, Tan Y D, et al.A 3D-printed stretchable structural supercapacitor with active stretchability/flexibility and remarkable volumetric capacitance[J].Journal of Materials Chemistry A, 2020, 8(27):13646-13685.
[59] Shi C M, Wang T Y, Liao X B, et al.Accordion-like stretchable Li-ion batteries with high energy density[J].Energy Storage Materials, 2019, 17:136-142.
[60] Kim M, Nam S, Oh M, et al.Bioinspired, shape-morphing scale battery for untethered soft robots[J].Soft Robotics, 2022, 9(3):486-496.
[61] Zhou K K, Zhao Y, Sun X P, et al.Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing[J].Nano Energy, 2020, 70:104546.
[62] Zhao G R, Zhang Y W, Shi N, et al.Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing[J].Nano Energy, 2019, 59:302-310.
[63] He X, Gu J, Hao Y, et al.Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection[J].Chemical Engineering Journal, 2022, 450:137937.
[64] Molina-Lopez F, Gao T, Kraft U, et al.Inkjet-printed stretchable and low voltage synaptic transistor array[J].Nature Communications, 2019, 10(1):2676.
[65] Ren H, Zhang J M, Tong Y H, et al.Synchronously improved stretchability and mobility via tuning molecular weight for intrinsically stretchable transistor[J].Journal of Materials Chemistry C, 2020, 8(44):15646-15654.
[66] Zheng Y, Liu Y, Zhong D, et al.Monolithic optical microlithography of high-density elastic circuits[J].Science, 2021, 373(6550):88-94.
文章导航

/