[1] Buganza T A, Gosain A K, Kuhl E.Stretching skin:The physiological limit and beyond[J].International Journal of Non-Linear Mechanics, 2012, 47(8):938-949.
[2] He J, Zhang Y F, Zhou R H, et al.Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects[J].Journal of Materiomics, 2020, 6(1):86-101.
[3] Xu W N, Kwok K, Gracias D.Ultrathin shape change smart materials[J].Accounts of Chemical Research, 2018, 51(2):436-444.
[4] Weng W, Chen P N, He S S, et al.Smart electronic textiles[J].Angewandte Chemie International Edition, 2016, 55(21):6140-6169.
[5] Chen X, Ahn J H.Biodegradable and bioabsorbable sensors based on two-dimensional materials[J].Journal of Materials Chemistry B, 2020, 8(6):1082-1092.
[6] Li J, Bao R R, Tao J, et al.Recent progress in flexible pressure sensor arrays:From design to applications[J].Journal of Materials Chemistry C, 2018, 6(44):11878-11892.
[7] Choi Y S, Gwak M J, Lee D W.Polymeric cantilever integrated with PDMS/graphene composite strain sensor[J].Review of Scientific Instruments, 2016, 87(10):105004.
[8] Qin Y Y, Peng Q Y, Ding Y J, et al.Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J].ACS Nano, 2015, 9(9):8933-8941.
[9] Huang Y, Zeng X, Wang W D, et al.High-resolution flexible temperature sensor based graphite-filled polyethylene oxide and polyvinylidene fluoride composites for body temperature monitoring[J].Sensors and Actuators A:Physical, 2018, 278(1):1-10.
[10] Rashid I, Irfan M, Gill Y, et al.Stretchable strain sensors based on polyaniline/thermoplastic polyurethane blends[J].Polymer Bulletin, 2020, 77(3):1081-1093.
[11] Mannsfeld S, Tee B, Stoltenberg R, et al.Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J].Nature Materials, 2010, 9(10):859-864.
[12] Wang X W, Gu Y, Xiong Z P, et al.Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J].Advanced Materials, 2013, 26(9):1336-1342.
[13] He J, Xiao P, Lu W, et al.A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor[J].Nano Energy, 2019, 59:422-433.
[14] Chen J W, Zhu Y T, Jiang W.A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer[J].Composites Science and Technology, 2020, 186(20):107938.
[15] Ashizawa M, Zheng Y, Tran H, et al.Intrinsically stretchable conjugated polymer semiconductors in field effect transistors[J].Progress in Polymer Science, 2019, 100:101181.
[16] Rao V, Shauloff N, Sui X, et al.Polydiacetylene hydrogel self-healing capacitive strain sensor[J].Journal of Materials Chemistry C, 2020, 8(18):6034-6041.
[17] Wang J, Tang F, Wang Y, et al.Self-healing and highly stretchable gelatin hydrogel for self-powered strain sensor[J].ACS Applied Materials & Interfaces, 2020, 12(1):1558-1566.
[18] Wang S L, Nie Y Y, Zhu H U, et al.Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs[J].Science Advances, 2022, 8(13):eabl5511.
[19] Lee G H, Lee Y R, Kim H, et al.Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics[J].Nature Communications, 2022, 13:2463.
[20] Sun Y G, Choi W M, Jiang H Q, et al.Controlled buckling of semiconductor nanoribbons for stretchable electronics[J].Nature Nanotechnology, 2006, 1(3):201-207.
[21] Weng W, Sun Q, Zhang Y, et al.A gum-like lithiumion battery based on a novel arched structure[J].Advanced Materials, 2015, 27(8):1363-1369.
[22] Zhao X L, Hua Q L, Yu R M, et al.Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping[J].Advanced Electronic Materials, 2015, 1(7):1500142.
[23] Mamidanna A, Song Z, Lü C, et al.Printing stretchable spiral interconnects using reactive ink chemistries[J].ACS Applied Materials & Interfaces, 2016, 8(20):12594-12598.
[24] Hua Q L, Sun J L, Liu H T, et al.Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing[J].Nature Communications, 2018, 9(1):244.
[25] Li S, Liu G, Li R, et al.Contact-Resistance-Free stretchable strain sensors with high repeatability and linearity[J].ACS Nano, 2022, 16(1):541-553.
[26] Tao J, Dong M, Li L, et al.Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer[J].Microsystem & Nanoengineering, 2020, 6(1):62.
[27] Kim M K, Kim M S, Kwon H B, et al.Wearable triboelectric nanogenerator using a plasma-etched PDMSCNT composite for a physical activity sensor[J].RSC Advances, 2017, 7(76):48368-48373.
[28] Puneetha P, Mallem S, Lee Y, et al.Strain-controlled flexible Graphene/GaN/PDMS sensors based on the piezotronic effect[J].ACS Applied Materials & Interfaces, 2020, 12(32):36660-36669.
[29] Lee W S, Yeo K S, Andriyana A, et al.Effect of cyclic compression and curing agent concentration on the stabilization of mechanical properties of PDMS elastomer[J].Materials & Design, 2016, 96:470-475.
[30] Xia T, Yuwen H J, Lin N.Self-bonding sandwiched membranes from PDMS and cellulose nanocrystals by engineering strategy of layer-by-layer curing[J].Composites Science and Technology, 2018, 161:8-15.
[31] Keulemans G, Ceyssens F, Puers R.An ionic liquid based strain sensor for large displacement measurement[J].Biomed Microdevices, 2017, 19:1.
[32] He Q, Vokoun D, Stalbaum T, et al.Mechanoelectric transduction of ionic polymer-graphene composite sensor with ionic liquid as electrolyte[J].Sensors and Actuators A:Physical, 2019, 286:68-77.
[33] Li J, Bao R R, Tao J, et al.Visually aided tactile enhancement system based on ultrathin highly sensitive crack-based strain sensors[J].Applied Physics Reviews, 2020, 7(1):011404.
[34] Hyun D, Park M, Park C, et al.Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes[J].Advanced Materials, 2011, 23(26):2946-2950.
[35] Zhang Y Z, Lee K H, Anjum D H, et al.MXenes stretch hydrogel sensor performance to new limits[J].Science Advances, 2018, 4(6):6.
[36] Nur R, Matsuhisa N, Jiang Z, et al.A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films[J].Nano Letters, 2018, 18(9):5610-5617.
[37] Ha C J, Park B G, Suk O M, et al.Photo-induced fabrication of Ag nanowire circuitry for invisible, ultrathin, conformable pressure sensors[J].Journal of Materials Chemistry C, 2017, 5(38):9986-9994.
[38] Lee S W, Reuveny A, Reeder J, et al.A transparent bending-insensitive pressure sensor[J].Nature Nanotechnology, 2016, 11(5):472-478.
[39] Zhang Q, Wang Q, Wang G, et al.Ultrathin and highly tough hydrogel films for multifunctional strain sensors[J].ACS Applied Materials & Interfaces, 2021, 13(42):50411-50421.
[40] Wang L, Chen Y, Lin L W, et al.Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite[J].Chemical Engineering Journal, 2019, 362:89-98.
[41] Wang X D, Zhang Y F, Zhang X J, et al.A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics[J].Advanced Materials, 2018, 30(12):1706738.
[42] Kim H, Shaqeel A, Han S, et al.In situ formation of Ag nanoparticles for fiber strain sensors:Toward textilebased wearable applications[J].ACS Applied Materials & Interfaces, 2021, 13(33):39868-39879.
[43] Wu X D, Han Y Y, Zhang X X, et al.Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring[J].ACS Applied Materials & Interfaces, 2016, 8(15):9936-9945.
[44] Jia Y H, Shen L L, Liu J, et al.An efficient PEDOTcoated textile for wearable thermoelectric generators and strain sensors[J].Journal of Materials Chemistry C, 2019, 7(12):3496-3502.
[45] Boutry C, Kaizawa Y, Schroeder B, et al.A stretchable and biodegradable strain and pressure sensor for orthopaedic application[J].Nature Electronics, 2018, 1(5):314-321.
[46] Wan S, Zhu Z H, Yin K B, et al.A highly skin-conformal and biodegradable graphene-based strain sensor[J].Small Methods, 2018, 2(10):1700374.
[47] Hou C, Xu Z J, Qiu W, et al.A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection[J].Small, 2019, 15(11):1805084.
[48] Liu Y, Tao J, Yang W K, et al.Biodegradable, breathable leaf vein-based tactile sensors with tunable sensitivity and sensing range[J].Small, 2022, 18(8):2106906.
[49] Zhang S F, Li Y W, Tian Q Y, et al.Highly conductive, flexible and stretchable conductors based on fractal silver nanostructures[J].Journal of Materials Chemistry C, 2018, 6(15):3999-4006.
[50] Hong J, Kim W, Choi D, et al.Omnidirectionally stretchable and transparent graphene electrodes[J].ACS Nano, 2016, 10(10):9466-9455.
[51] Fang Y S, Li Y, Wang X, et al.Cryo-transferred ultrathin and stretchable epidermal electrodes[J].Small, 2020, 16(28):2000450.
[52] Cao J, Liang F, Li H Y, et al.Ultra-robust stretchable electrode for e-skin:In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction[J].Infomation Materials, 2022, 4(4):e12302.
[53] Meng X C, Xing Z, Hu X T, et al.Stretchable perovskite solar cells with recoverable performance[J].Angewandte Chemie International Edition, 2020, 59(38):16602-16608.
[54] Rhee R, Im S, Lee H, et al.Stretchable hole extraction layer for improved stability in perovskite solar cells[J].ACS Sustainable Chemistry & Engineering, 2020, 8(21):8004-8010.
[55] Sun J L, Hua Q L, Zhou R R, et al.Piezo-phototronic effect enhanced efficient flexible perovskite solar cells[J].ACS Nano, 2019, 13(4):4507-4513.
[56] Li H, Wang W N, Yang Y, et al.Kirigami-Based highly stretchable thin film solar cells that are mechanically stable for more than 1000 cycles[J].ACS Nano, 2020, 14(2):1560-1568.
[57] Zang J F, Cao C Y, Feng Y Y, et al.Stretchable and high-performance supercapacitors with crumpled graphene papers[J].Scientific Reports, 2014, 4:6492.
[58] Chang P, Mei H, Tan Y D, et al.A 3D-printed stretchable structural supercapacitor with active stretchability/flexibility and remarkable volumetric capacitance[J].Journal of Materials Chemistry A, 2020, 8(27):13646-13685.
[59] Shi C M, Wang T Y, Liao X B, et al.Accordion-like stretchable Li-ion batteries with high energy density[J].Energy Storage Materials, 2019, 17:136-142.
[60] Kim M, Nam S, Oh M, et al.Bioinspired, shape-morphing scale battery for untethered soft robots[J].Soft Robotics, 2022, 9(3):486-496.
[61] Zhou K K, Zhao Y, Sun X P, et al.Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing[J].Nano Energy, 2020, 70:104546.
[62] Zhao G R, Zhang Y W, Shi N, et al.Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing[J].Nano Energy, 2019, 59:302-310.
[63] He X, Gu J, Hao Y, et al.Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection[J].Chemical Engineering Journal, 2022, 450:137937.
[64] Molina-Lopez F, Gao T, Kraft U, et al.Inkjet-printed stretchable and low voltage synaptic transistor array[J].Nature Communications, 2019, 10(1):2676.
[65] Ren H, Zhang J M, Tong Y H, et al.Synchronously improved stretchability and mobility via tuning molecular weight for intrinsically stretchable transistor[J].Journal of Materials Chemistry C, 2020, 8(44):15646-15654.
[66] Zheng Y, Liu Y, Zhong D, et al.Monolithic optical microlithography of high-density elastic circuits[J].Science, 2021, 373(6550):88-94.