综述

碱激发胶凝材料的碳化性能研究进展

  • 吕毅刚 ,
  • 肖百豪 ,
  • 韩伟威 ,
  • 彭晖 ,
  • 乔杰 ,
  • 王翠 ,
  • 李星
展开
  • 1. 长沙理工大学土木工程学院, 长沙 410114;
    2. 长沙理工大学桥梁结构安全控制湖南省工程实验室, 长沙 410114;
    3. 长沙理工大学交通运输工程学院, 长沙 410114
吕毅刚,讲师,研究方向为混凝土结构长期性能与耐久性能评估,电子信箱:37237308@qq.com

收稿日期: 2021-11-16

  修回日期: 2022-07-18

  网络出版日期: 2022-10-19

基金资助

湖南省教育厅科学研究一般项目(20C0063);湖南省教育厅科学研究创新平台开放基金项目(20K005);长沙理工大学土木工程优势特色重点学科创新性基金项目(17ZDXK07)

Research progress on carbonation properties of alkali-activated materials

  • Lü Yigang ,
  • XIAO Baihao ,
  • HAN Weiwei ,
  • PENG Hui ,
  • QIAO Jie ,
  • WANG Cui ,
  • LI Xing
Expand
  • 1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China;
    2. Hunan Province Engineering Laboratory for Bridge Structure Safety Control, Changsha University of Science and Technology, Changsha 410114, China;
    3. School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China

Received date: 2021-11-16

  Revised date: 2022-07-18

  Online published: 2022-10-19

摘要

碱激发胶凝材料作为新型绿色建筑材料,在促进工业固体废料的循环使用、减少CO2气体排放等方面有着突出的优势,近几年针对这种材料耐久性能的研究越发受到重视,碳化作为影响耐久性能的关键因素,也需要进一步的研究。从碳化机理、碳化速率、碳化影响以及抗碳化性能改善方面总结了碱激发胶凝材料碳化性能研究现状,概述了目前碳化领域研究所取得的成果和面临的困难。基于已有成果,提出了研究建议,以期为碱激发混凝土的发展和推广应用提供参考。

本文引用格式

吕毅刚 , 肖百豪 , 韩伟威 , 彭晖 , 乔杰 , 王翠 , 李星 . 碱激发胶凝材料的碳化性能研究进展[J]. 科技导报, 2022 , 40(17) : 94 -104 . DOI: 10.3981/j.issn.1000-7857.2022.17.008

Abstract

As a new type of green building material, alkali-activated material has outstanding advantages in many fields, such as recycling of industrial solid wastes and reduction of CO2 emission. In recent years, more and more attention has been paid to durability of this material. Carbonation as a key factor affecting durability also needs further research. From the aspects of carbonation mechanism, carbonation rate, carbonation effect and improvement of carbonation resistance, this paper summarizes the research status of carbonation performance of alkali-activated materials and achievements and difficulties in this field. Based on the existing results, some research suggestions are proposed to provide reference for the development and application of alkaliactivated concrete.

参考文献

[1] Autef A, Joussein E, Gasgnier G, et al.Role of the silica source on the geopolymerization rate[J].Journal of NonCrystalline Solids, 2012, 358(21):2886-2893.
[2] Wan Q, Rao F, Song S X, et al.Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios[J].Cement and Concrete Composites, 2017, 79:45-52.
[3] Fang G H, Ho W K, Tu W L, et al.Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature[J].Construction and Building Materials, 2018, 172:476-487.
[4] Yip C K, Lukey G C, Deventer J.The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation[J].Cement and Concrete Research, 2005, 35(9):1688-1697.
[5] Nath S K, Kumar S.Role of alkali concentration on reaction kinetics of fly ash geopolymerization[J].Journal of Non-Crystalline Solids, 2018, 505:241-251.
[6] Mobili A, Belli A, Giosuè C, et al.Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class[J].Cement and Concrete Research, 2016, 88:198-210.
[7] Gökhan G, Gökhan K.The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures[J].Composites Part B:Engineering, 2014, 58:371-377.
[8] Johannesson B, Utgenannt P.Microstructural changes caused by carbonation of cement mortar[J].Cement and Concrete Research, 2001, 31(6):925-931.
[9] Liu J, Qiu Q W, Chen X C, et al.Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress[J].Corrosion Science, 2016, 112:364-372.
[10] Liu J, Qiu Q W, Chen X C, et al.Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete[J].Cement and Concrete Research, 2017, 95:217-225.
[11] Rostami V, Shao Y X, Boyd A J, et al.Microstructure of cement paste subject to early carbonation curing[J].Cement and Concrete Research, 2012, 42(1):186-193.
[12] 冯兴国, 陈达, 卢向雨.混凝土环境中钢筋钝化性能研究进展[J].科技导报, 2014, 32(25):81-84.
[13] Branch J L, Kosson D S, Garrabrants A C, et al.The impact of carbonation on the microstructure and solubility of major constituents in microconcrete materials with varying alkalinities due to fly ash replacement of ordinary Portland cement[J].Cement and Concrete Research, 2016, 89:297-309.
[14] Peter M A, Muntean A, Meier S A, et al.Competition of several carbonation reactions in concrete:A parametric study[J].Cement and Concrete Research, 2008, 38(12):1385-1393.
[15] Zuo Y, Nedeljković M, Ye G.Pore solution composition of alkali-activated slag/fly ash pastes[J].Cement and Concrete Research, 2019, 115:230-250.
[16] 黄丽萍, 马倩敏, 郭荣鑫, 等.水玻璃碱浓度和模数对碱矿渣胶凝材料孔隙液化学组成影响试验研究[J].硅酸盐通报, 2019, 38(3):799-804.
[17] Mundra S, Criado M, Bernal S A, et al.Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes[J].Cement and Concrete Research, 2017, 100:385-397.
[18] Robayo-Salazar R A, Aguirre-Guerrero A M, Mejia R.Carbonation-induced corrosion of alkali-activated binary concrete based on natural volcanic pozzolan[J].Construction and Building Materials, 2019, 232:117189.
[19] Palacios M, Puertas F.Effect of carbonation on alkaliactivated slag paste[J].Journal of the American Ceramic Society, 2006, 89(10):3211-3221.
[20] 李静.氢氧化钠-矿渣和改性水玻璃-矿渣胶凝材料的组成与结构及其对碳化和干缩性能的影响[D].广州:华南理工大学, 2020.
[21] Qiu Q W.A state-of-the-art review on the carbonation process in cementitious materials:Fundamentals and characterization techniques[J].Construction and Building Materials, 2020, 247:118503.
[22] Bakharev T, Sanjayan J G, Cheng Y B.Resistance of alkali-activated slag concrete to carbonation[J].Cement & Concrete Research, 2001, 31(9):1277-1283.
[23] Huang G D, Ji Y S, Zhang L L, et al.Advances in understanding and analyzing the anti-diffusion behavior in complete carbonation zone of MSWI bottom ash-based alkali-activated concrete[J].Construction and Building Materials, 2018, 186:1072-1081.
[24] 原元, 赵人达, 占玉林, 等.粉煤灰-矿渣基地聚物混凝土的抗碳化性能[J].西南交通大学学报, 2021, 56(6):1275-1282.
[25] Nedeljkovic M, Savija B, Zuo Y B, et al.Effect of natural carbonation on the pore structure and elastic modulus of the alkali-activated fly ash and slag pastes[J].Construction and Building Materials, 2018, 161:687-704.
[26] 黄琪, 石宵爽, 王清远, 等.再生粗骨料对粉煤灰基地聚物混凝土碳化性能的影响[J].硅酸盐通报, 2015, 34(5):1264-1269.
[27] Puertas F, Palacios M, Vázquez T.Carbonation process of alkali-activated slag mortars[J].Journal of Materials Science, 2006, 41(10):3071-3082.
[28] Morandeau A, Thiéry M, Dangla P.Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties[J].Cement and Concrete Research, 2014, 56(10):153-170.
[29] Li N, Farzadnia N, Shi C J.Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation[J].Cement and Concrete Research, 2017, 100:214-226.
[30] Mei K, Gu T, Zheng Y Z, et al.Effectiveness and microstructure change of alkali-activated materials during accelerated carbonation curing[J].Construction and Building Materials, 2021, 274(3):122063.
[31] Ye H L, Cai R J, Tian Z S.Natural carbonation-induced phase and molecular evolution of alkali-activated slag:Effect of activator composition and curing temperature[J].Construction and Building Materials, 2020, 248:118726.
[32] Seo J, Kim S, Park S, et al.Microstructural evolution and carbonation behavior of lime-slag binary binders[J].Cement and Concrete Composites, 2021, 119:104000.
[33] Jang J G, Park S M, Kim G M, et al.Stability of MgOmodified geopolymeric gel structure exposed to a CO2-rich environment[J].Construction and Building Materials, 2017, 151:178-185.
[34] 叶家元, 张文生, 史迪, 等.钢渣碳化砖的碱激发-碳化协同效应影响因素[J].硅酸盐学报, 2019, 47(11):1582-1592.
[35] Liu S, Hao Y F, Ma G W.Approaches to enhance the carbonation resistance of fly ash and slag based alkaliactivated mortar-experimental evaluations[J].Journal of Cleaner Production, 2021, 280:124321.
[36] 陈晓星, 曹海琳, 翁履谦, 等.碱激发水泥砂浆碳化行为研究[J].武汉理工大学学报, 2014, 36(3):18-22.
[37] 何彤彤.碱激发矿渣的碳化性能研究[D].南京:东南大学, 2018.
[38] Shi Z G, Shi C J, Wan S, et al.Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars[J].Cement and Concrete Research, 2018, 113:55-64.
[39] Bernal S A, Gutierrez R M D, Provis J L.Engineering and durability properties of concretes based on alkaliactivated granulated blast furnace slag/metakaolin blends[J].Construction and Building Materials, 2012, 33:99-108.
[40] Pasupathy K, Berndt M, Castel A, et al.Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years[J].Construction and Building Materials, 2016, 125:661-669.
[41] Rivard P, Bérubé M A, Ballivy G, et al.Effect of dryingrewetting on the alkali concentration of the concrete pore solution[J].Cement and Concrete Research, 2003, 33(6):927-929.
[42] Cyr M, Rivard P, Labrecque F, et al.High-pressure device for fluid extraction from porous materials:Application to cement-based materials[J].Journal of the American Ceramic Society, 2008, 91(8):2653-2658.
[43] Räsänen V, Penttala V.The pH measurement of concrete and smoothing mortar using a concrete powder suspension[J].Cement and Concrete Research, 2004, 34(5):813-820.
[44] Li L F, Nam J, Hartt W H.Ex situ leaching measurement of concrete alkalinity[J].Cement and Concrete Research, 2005, 35(2):277-283.
[45] Bernal S A, Provis J L, Brice D G, et al.Accelerated carbonation testing of alkali-activated binders significantly underestimates service life:The role of pore solution chemistry[J].Cement and Concrete Research, 2012, 42(10):1317-1326.
[46] Vu T H, Gowripalan N, Silva P D, et al.Assessing carbonation in one-part fly ash/slag geopolymer mortar:Change in pore characteristics using the state-of-theart technique neutron tomography[J].Cement and Concrete Composites, 2020, 114:103759.
[47] Badar S, Kupwade-Patil K, Bernal S A, et al.Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes[J].Construction and Building Materials, 2014, 61:79-89.
[48] Abdalqader A, Jin F, Al-Tabbaa A.Performance of magnesia-modified sodium carbonate-activated slag/fly ash concrete[J].Cement and Concrete Composites, 2019, 103:160-174.
[49] Mccaslin E R, White C E.A parametric study of accelerated carbonation in alkali-activated slag[J].Cement and Concrete Research, 2021, 145(2):106454.
[50] Bernal S A, Nicolas R S, Myers R J, et al.MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders[J].Cement and Concrete Research, 2014, 57:33-43.
[51] Behfarnia K, Rostami M.An assessment on parameters affecting the carbonation of alkali-activated slag concrete[J].Journal of Cleaner Production, 2017, 157:1-9.
[52] 张俊涛.碱矿渣水泥抗碳化性能的改善措施及机理研究[D].西安:西安建筑科技大学, 2019.
文章导航

/