研究论文

基于自适应捕获算法的数字多波束抗干扰系统的应用

  • 安浩平 ,
  • 张伟 ,
  • 李剑凯 ,
  • 梁楠
展开
  • 1. 河南省科学院应用物理研究所有限公司, 河南省物联网感知技术与系统重点实验室, 郑州 450008;
    2. 北京航天云星智能技术有限公司, 北京 100094
安浩平,助理研究员,研究方向为微电子技术,电子信箱:hoaping@163.com

收稿日期: 2022-05-07

  修回日期: 2022-07-10

  网络出版日期: 2022-10-19

基金资助

河南省科技攻关项目(212102210570)

Application of digital beamforming anti-jamming system based on adaptive acquisition algorithm

  • AN Haoping ,
  • ZHANG Wei ,
  • LI Jiankai ,
  • LIANG Nan
Expand
  • 1. Henan Academy of Sciences Institute of Applied Physics Co., Ltd., Henan Key Laboratory of Internet of Things Perception Technology and System, Zhengzhou 450008, China;
    2. Beijing Aerospace Cloudstar Intelligent Technology Co., Ltd., Beijing 100094, China

Received date: 2022-05-07

  Revised date: 2022-07-10

  Online published: 2022-10-19

摘要

针对宽带多星多波束应用现状和场景,提出了数字多波束抗干扰捕获算法和高稳健性接收机整机设计实现方法。该方法基于卫星接收机,以惯导提供的航向、俯仰角和横滚角为条件,确定单约束的导向矢量,推导出空时自适应处理结构的数字多波束改进型捕获算法。仿真实验表明,改进后的算法实现了多波束数据的合理应用,能够稳定载波相位,增强空间增益,提高空域分辨率。

本文引用格式

安浩平 , 张伟 , 李剑凯 , 梁楠 . 基于自适应捕获算法的数字多波束抗干扰系统的应用[J]. 科技导报, 2022 , 40(17) : 120 -128 . DOI: 10.3981/j.issn.1000-7857.2022.17.011

Abstract

This paper presents a brief introduction to anti-jamming technology and the current status of multi-satellite and multi-beam application, and then proposes a new digital multi-beam anti-jamming receiver implementation method. This method uses inertial device data (heading, pitch angle, and roll angle) to determine the single-constrained steering vector and further derives a digital multi-beam improved acquisition algorithm with a space-time adaptive processing structure. Simulation result shows that the improved acquisition algorithm can fully utilize multi-beam data, stabilize carrier phase, and achieve stronger spatial gain and higher spatial resolution.

参考文献

[1] Frost O L.An algorithm for linearly constrained adaptive array processing[J].Proceedings of the IEEE, 1972, 60(8):926-935.
[2] Reed I S, Mallett J D, Brennan L E.Rapid convergence rate in adaptive arrays[J].IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6):853-863.
[3] Brennan L E, Reed L S.Theory of adaptive radar[J].IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(2):237-252.
[4] Lin Z, Ying M, Jicheng D.A STAP interference suppression technology based on subspace projection for BeiDou signal[C]//2016 IEEE International Conference on Information and Automation (ICIA).Piscataway:IEEE, 2016:534-538.
[5] Fante R L, Vaccaro J J.Wideband cancellation of interference in a GPS receive array[J].IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2):549-564.
[6] Dogan M C, Mendel J M.Applications of cumulants to array processing.I.Aperture extension and array calibration[J].IEEE Transactions on Signal Processing, 1995, 43(5):1200-1216.
[7] 冯小平, 李鹏, 杨绍全.通信对抗原理[M].西安:西安电子科技大学出版社, 2009.
[8] Guo Y, Wei Y, Xu R, et al.Fast-time STAP based on BSS for heterogeneous ionospheric clutter mitigation in HFSWR[J].IET Radar, Sonar & Navigation, 2020, 14(6):927-934.
[9] Li Q, Liao B, Huang L, et al.A robust STAP method for airborne radar with array steering vector mismatch[J].Signal Processing, 2016, 128:198-203.
[10] Xu Y G, Yin B J, Ma J Y, et al.High order noncircularity restoral diagonal loading robust adaptive beamforming:HNRDL[C]//IET International Radar Conference 2015.London:IET, 2015:1-4.
[11] Xu J W, Liao G S, Huang L, et al.Robust adaptive beamforming for fast-moving target detection with FDASTAP radar[J].IEEE Transactions on Signal Processing, 2017, 65(4):973-984.
文章导航

/