[1] Lai Q W, Paskevicius M, Sheppard D A, et al. Hydrogen storage materials for mobile and stationary applications:Current state of the art[J]. Chemsuschem, 2015, 8(17):2789-2825.
[2] Lototskyy M V, Yartys V A, Pollet B G, et al. Metal hydride hydrogen compressors:A review[J]. International Journal of Hydrogen Energy, 2014, 39(11):5818-5851.
[3] Jia Y, Sun C H, Shen S H, et al. Combination of nanosizing and interfacial effect:Future perspective for designing Mg-based nanomaterials for hydrogen storage[J]. Renewable and Sustainable Energy Reviews, 2015, 44:289-303.
[4] Sadhasivam T, Kim H T, Jung S, et al. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications:A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72:523-534.
[5] Zhang J, Yan S, Qu H. Recent progress in magnesium hydride modified through catalysis and nanoconfinement[J]. International Journal of Hydrogen Energy, 2018, 43(3):1545-1565.
[6] Chen H P, Yu H, Zhang Q Q, et al. Enhancement in dehydriding performance of magnesium hydride by iron incorporation:A combined experimental and theoretical investigation[J]. Journal of Power Sources, 2016, 322:179-186.
[7] Tayeh T, Awad A S, Nakhl M, et al. Production of hydrogen from magnesium hydrides hydrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(7):3109-3117.
[8] Kushch S D, Kuyunko N S, Nazarov R S, et al. Hydrogengenerating compositions based on magnesium[J]. International Journal of Hydrogen Energy, 2011, 36(1):1321-1325.
[9] Huang M H, Ouyang L Z, Wang H, et al. Hydrogen generation by hydrolysis of MgH2 and enhanced kinetics performance of ammonium chloride introducing[J]. International Journal of Hydrogen Energy, 2015, 40(18):6145-6150.
[10] Zhao Z L, Zhu Y F, Li L Q. Efficient catalysis by MgCl 2 in hydrogen generation via hydrolysis of Mg-based hydride prepared by hydriding combustion synthesis[J]. Chemical Communications, 2012, 48(44):5509-5511.
[11] Awad A S, El-Asmar E, Tayeh T, et al. Effect of carbons (G and CFs), TM (Ni, Fe and Al) and oxides (Nb2O5 and V2O5) on hydrogen generation from ball milled Mg-based hydrolysis reaction for fuel cell[J]. Energy, 2016, 95:175-186.
[12] Chen J, Fu H, Xiong Y F, et al. MgCl2 promoted hydrolysis of MgH2 nanoparticles for highly efficient H2 generation[J]. Nano Energy, 2014, 10:337-343.
[13] Verbovytskyy Y V, Berezovets V V, Kytsya A R, et al. Hydrogen generation by the hydrolysis of MgH2[J]. Materials Science, 2020, 56(1):1-14.
[14] Hiroi S, Hosokai S, Akiyama T. Ultrasonic irradiation on hydrolysis of magnesium hydride to enhance hydrogen generation[J]. International Journal of Hydrogen Energy, 2011, 36(2):1442-1447.
[15] Huang M H, Ouyang L Z, Chen Z L, et al. Hydrogen production via hydrolysis of Mg-oxide composites[J]. International Journal of Hydrogen Energy, 2017, 42(35):22305-22311.
[16] Tegel M, Schöne S, Kieback B, et al. An efficient hydrolysis of MgH2-based materials[J]. International Journal of Hydrogen Energy, 2017, 42(4):2167-2176.
[17] Yang B, Zou J X, Huang T P, et al. Enhanced hydrogenation and hydrolysis properties of core-shell structured Mg-MOx(M=Al, Ti and Fe) nanocomposites prepared by arc plasma method[J]. Chemical Engineering Journal, 2019, 371:233-243.
[18] Mao J W, Huang T P, Panda S, et al. Direct observations of diffusion controlled microstructure transition in Mg-In/Mg-Ag ultrafine particles with enhanced hydrogen storage and hydrolysis properties[J]. Chemical Engineering Journal, 2021, 418:129301.
[19] Huang M H, Ouyang L Z, Ye J S, et al. Hydrogen generation via hydrolysis of magnesium with seawater using Mo, MoO2, MoO3 and MoS2 as catalysts[J]. Journal of Materials Chemistry A, 2017, 5(18):8566-8575.
[20] Ouyang L Z, Ma M L, Huang M H, et al. Enhanced hydrogen generation properties of MgH2-based hydrides by breaking the magnesium hydroxide passivation layer[J]. Energies, 2015, 8(5):4237-4252.
[21] Pighin S A, Urretavizcaya G, Bobet J L, et al. Nanostructured Mg for hydrogen production by hydrolysis obtained by MgH2 milling and dehydriding[J]. Journal of Alloys and Compounds, 2020, 827:154000.
[22] Huang J M, Duan R M, Ouyang L Z, et al. The effect of particle size on hydrolysis properties of Mg3La hydrides[J]. International Journal of Hydrogen Energy, 2014, 39(25):13563-13568.
[23] 陈明,汪元奎,马祥,等.一种固定式氢化镁水解自动控制装置及方法:202010177226.4[P]. 2020-07-07.
[24] 邹建新,秦悦,谷杰人.一种以氢化镁为储氢材料的制氢方法及装置:201811160760.3[P]. 2019-01-22.
[25] 徐波,沈煜遥,马冯琪,等.一种氢化镁水解制氢装置:202221165281.2[P]. 2022-07-26.
[26] Yu X B, Tang Z W, Sun D L, et al. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications[J]. Progress in Materials Science, 2017, 88:1-48.
[27] Chen H P, Han Z Y, Feng X, et al. Solid-phase hydrogen in a magnesium-carbon composite for efficient hydrogenation of carbon disulfide[J]. Journal of Materials Chemistry A, 2018, 6(7):3055-3062.
[28] Sun Y H, Shen C Q, Lai Q W, et al. Tailoring magnesium based materials for hydrogen storage through synthesis:Current state of the art[J]. Energy Storage Materials, 2018, 10:168-198.
[29] Schlapbach L, Griessen R, Gupta M. Hydrogen in intermetallic compounds I:Electronic, thermodynamic, and crystallographic properties, preparation[M]. Berlin:Springer Verlag, 1988.
[30] Dong S, Li C Q, Wang J H, et al. The"burst effect"of hydrogen desorption in MgH2 dehydrogenation[J/OL]. Journal of Materials Chemistry A, 2022, https://doi.org/10.1039/D2TA06458H.
[31] Aguey-Zinsou K F, Ares-Fernandez J R. Hydrogen in magnesium:New perspectives toward functional stores[J]. Energy&Environmental Science, 2010, 3(5), 526-543.
[32] Huang T P, Huang X, Hu C Z, et al. MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2[J]. Chemical Engineering Journal, 2021, 421:127851.
[33] Okamoto H. Mg-Ni (Magnesium-Nickel)[J]. Journal of Phase Equilibria and Diffusion, 2007, 28(3):303.
[34] Ghosh P, Mezbahul-Islam M, Medraj M. Critical assessment and thermodynamic modeling of Mg-Zn, Mg-Sn, Sn-Zn and Mg-Sn-Zn systems[J]. Calphad, 2012(36):28-43.
[35] Reilly J J, Wiswall R H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4[J]. Inorganic Chemistry, 1968, 7:2254-2256.
[36] Vajo J J, Mertens F, Ahn C C, et al. Altering hydrogen storage properties by hydride destabilization through alloy formation:LiH and MgH2 destabilized with Si[J]. Journal of Physical Chemistry B, 2004, 108(37):13977-13983.
[37] Chen X, Zou J X, Zeng X Q, et al. Hydrogen storage in Mg2Fe (Ni) H6 nanowires synthesized from coarse-grained Mg and nano sized γ-Fe (Ni) precursors[J]. International Journal of Hydrogen Energy, 2016, 41(33):14795-14806.
[38] Zhong H C, Wang H, Liu J W, et al. Altered desorption enthalpy of MgH2 by the reversible formation of Mg (In) solid solution[J]. Scripta Materialia, 2011, 65(4):285-287.
[39] Si T Z, Zhang J B, Liu D M, et al. A new reversible Mg3Ag-H2 system for hydrogen storage[J]. Journal of Alloys and Compounds, 2013, 581:246-249.
[40] Ouyang L Z, Qin F X, Zhu M. The hydrogen storage behavior of Mg3La and Mg3LaNi0.1[J]. Scripta Materialia, 2006, 55(12):1075-1078.
[41] 马建丽,王艳,陶占良,等.具有18电子结构的Mg2CoH5纳米晶制备及其储氢性能研究[J].无机化学学报, 2012, 28(4):657-661.
[42] Pozzo M, Alfè D. Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) surfaces[J]. International Journal of Hydrogen Energy, 2009, 34:1922-1930.
[43] Liu T, Zhang T W, Zhang X Z, et al. Synthesis and hydrogen storage properties of ultrafine Mg-Zn particles[J]. International Journal of Hydrogen Energy, 2011, 36:3515-3520.
[44] Liang G, Huot J, Boily S, et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems[J]. Journal of Alloys and Compounds, 1999, 292(1/2):247-252.
[45] Cui J, Liu J W, Wang H, et al. Mg-TM (TM:Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures:synthesis, hydrogen storage performance and catalytic mechanism[J]. Journal of Materials Chemistry A, 2014, 2(25):9645-9655.
[46] Cui J, Wang H, Liu J W, et al. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts[J]. Journal of Materials Chemistry A, 2013, 1(18):5603-5611.
[47] Lan Z Q, Fu H, Zhao R L, et al. Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride[J]. Chemical Engineering Journal, 2022, 431:133985.
[48] Liu M, Xiao X, Zhao S, et al. Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride[J]. Journal of Materials Chemistry A, 2019, 7(10):5277-5287.
[49] Meng Y, Ju S, Chen W, et al. Design of Bifunctional Nb/V Interfaces for Improving Reversible Hydrogen Storage Performance of MgH2[J]. Small Structures, 2022:2200119.
[50] Liu J C, Liu Y N, Liu Z B, et al. Effect of rGO supported NiCu derived from layered double hydroxide on hydrogen sorption kinetics of MgH2[J]. Journal of Alloys and Compounds, 2019, 789:768-776.
[51] Xian K C, Wu M H, Gao M X, et al. A unique nanoflake-shape bimetallic Ti-Nb oxide of superior catalytic effect for hydrogen storage of MgH2[J]. Small, 2022:2107013.
[52] Anbarasu S, Muthukumar P, Mishra S C. Thermal modeling of LmNi4.91Sn0.15 based solid state hydrogen storage device with embedded cooling tubes[J]. International Journal of Hydrogen Energy, 2014, 39(28):15549-15562.
[53] Dhaou H, Ben Khedher N, Mellouli S, et al. Improvement of thermal performance of spiral heat exchanger on hydrogen storage by adding copper fins[J]. International Journal of Thermal Sciences, 2011, 50(12):2536-2542.
[54] Sajanlal P R, Sreeprasad T S, Samal A K, et al. Anisotropic nanomaterials:Structure, growth, assembly, and functions[J]. Nano Reviews, 2011, 2(1):5883.
[55] Huot J, Liang G, Boily S, et al. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride[J]. Journal of Alloys and Compounds, 1999, 293:495-500.
[56] Zhu W, Panda S, Lu C, et al. Using a self-assembled two-dimensional mxene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2[J]. ACS Applied Materials&Interfaces, 2020, 12(45):50333-50343.
[57] Zhang M, Xiao X Z, Luo B S, et al. Superior de/hydrogenation performances of MgH2 catalyzed by 3D flowerlike TiO2@C nanostructures[J]. Journal of Energy Chemistry, 2020, 46:191-198.
[58] Barawi M, Granero C, Díaz-Chao P, et al. Thermal decomposition of non-catalysed MgH2 films[J]. International Journal of Hydrogen Energy, 2014, 39(18):9865-9870.
[59] Tan Z, Chiu C, Heilweil E J, et al. Thermodynamics, kinetics and microstructural evolution during hydrogenation of iron-doped magnesium thin films[J]. International Journal of Hydrogen Energy, 2011, 36(16):9702-9713.
[60] Borsa D M, Gremaud R, Baldi A, et al. Structural, optical, and electrical properties of MgyTi1-yHx thin films[J]. Physical Review B, 2007, 75(20):205408.
[61] Singh S, Eijt S W H, Zandbergen M W, et al. Nanoscale structure and the hydrogenation of Pd-capped magnesium thin films prepared by plasma sputter and pulsed laser deposition[J]. Journal of Alloys and Compounds, 2007, 441(1):344-351.
[62] Kumar S, Pavloudis T, Singh V, et al. Hydrogen flux through size selected Pd nanoparticles into underlying mg nanofilms[J]. Advanced Energy Materials, 2018, 8(4):1701326.
[63] Li W Y, Li C S, Ma H, et al. Magnesium nanowires:Enhanced kinetics for hydrogen absorption and desorption[J]. Journal of the American Chemical Society, 2007, 129(21):6710-6711.
[64] Jeon K J, Moon H R, Ruminski A M, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts[J]. Nature Materials, 2011, 10(4):286-290.
[65] Nielsen T K, Manickam K, Hirscher M, et al. Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials[J]. ACS Nano, 2009, 3(11):3521-3528.
[66] Jia Y, Sun C H, Cheng L N, et al. Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2[J]. Physical Chemistry Chemical Physics, 2013, 15(16):5814-5820.
[67] Xia G L, Tan Y B, Chen X W, et al. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene[J]. Advanced Materials, 2015, 27(39):5981-5988.
[68] Zhu W, Ren L, Lu C, et al. Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances[J]. ACS Nano, 2021, 15(11):18493-18504.
[69] Ma Z W, Panda S, Zhang Q Y, et al. Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold[J]. Chemical Engineering Journal, 2021, 406:126790.
[70] Ma Z W, Zhang Q Y, Panda S, et al. In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage[J]. Sustainable Energy&Fuels, 2020, 4(9):4693-4703.
[71] Zhang X, Liu Y F, Ren Z H, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides[J]. Energy&Environmental Science, 2021, 14:2302-2313.
[72] Sun Y H, Shen C Q, Lai Q W, et al. Tailoring magnesium based materials for hydrogen storage through synthesis:Current state of the art[J]. Energy Storage Materials, 2018, 10:168-198.