专稿

镁基固态储氢材料研究进展

  • 张秋雨 ,
  • 任莉 ,
  • 李映辉 ,
  • 林羲 ,
  • 杨海燕 ,
  • 张松 ,
  • 毛正松 ,
  • 邹建新 ,
  • 丁文江
展开
  • 1. 上海市氢科学重点实验室&上海交通大学氢科学中心, 上海 200240;
    2. 上海交通大学材料科学与工程学院, 上海 200240;
    3. 上海交通大学轻合金精密成型国家工程研究中心, 上海 200240;
    4. 玉柴芯蓝新能源动力科技有限公司, 南宁 530007
张秋雨,博士后,研究方向为新型镁基储氢材料,电子信箱: zhangqiuyu20181113@126.com

收稿日期: 2022-09-07

  修回日期: 2022-10-28

  网络出版日期: 2022-12-12

基金资助

国家自然科学基金项目(51771112,52101253);广西科技搭桥行动项目(2020AB07007)

Solid state Mg-based hydrogen storage materials: Research progress and future perspective

  • ZHANG Qiuyu ,
  • REN Li ,
  • LI Yinghui ,
  • LIN Xi ,
  • YANG Haiyan ,
  • ZHANG Song ,
  • MAO Zhengsong ,
  • ZOU Jianxin ,
  • DING Wenjiang
Expand
  • 1. Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    3. National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China;
    4. Yuchai Synland Technology Co. Ltd., Nanning 530007, China

Received date: 2022-09-07

  Revised date: 2022-10-28

  Online published: 2022-12-12

摘要

镁基储氢材料具有储氢量高、镁资源丰富以及成本低廉等优点,被认为是极具应用前景的一类固态储氢材料。利用镁基储氢材料供氢主要有热分解放氢和水解产氢2种途径。MgH2的热分解放氢焓值高(75 kJ/mol H2),造成其放氢温度较高、动力学差; MgH2的水解过程中,由于常温水解产物Mg(OH)2逐渐包裹在MgH2表面,阻隔了MgH2与水的接触,从而导致水解产氢效率较低。近年来,大量研究工作聚焦于改善MgH2的热解/水解供氢性能及实际应用,已经取得了大量成果。针对目前国内外镁基固态储氢材料的研发,总结了材料/结构改性、反应条件对镁基储氢材料的热解/水解性能的影响,重点阐述了固态镁基储氢材料组成成分-微观结构-储放氢性能之间的关系,并对镁基储氢系统及实际应用场景进行了归纳。未来通过镁基固态储运氢技术的发展,将实现氢气的高安全、高效及大规模储运,助力中国氢能产业的发展。

本文引用格式

张秋雨 , 任莉 , 李映辉 , 林羲 , 杨海燕 , 张松 , 毛正松 , 邹建新 , 丁文江 . 镁基固态储氢材料研究进展[J]. 科技导报, 2022 , 40(23) : 6 -23 . DOI: 10.3981/j.issn.1000-7857.2022.23.001

Abstract

Magnesium-based hydrogen storage materials have the advantages of high hydrogen storage capacity, abundant magnesium resources and low cost, and are considered to be of promising application prospects. In recent years, numerous researches have focused on improving the performance of hydrogen supply by pyrolysis/hydrolysis of MgH2 and many good achievements have been obtained. Based on the recent research progress, this paper summarizes the effects of the material/ structure modification and the reaction conditions on pyrolysis/hydrolysis performance of the magnesium-based hydrogen storage materials, and expounds the relationship between composition-microstructure-properties of solid Mg-based hydrogen storage materials. Meanwhile, the Mg-based hydrogen storage systems and their industrial applications are summarized. At last, the current results of the solid state Mg-based hydrogen storage are summarized and some suggestions for the future investigations are proposed.

参考文献

[1] Lai Q W, Paskevicius M, Sheppard D A, et al. Hydrogen storage materials for mobile and stationary applications:Current state of the art[J]. Chemsuschem, 2015, 8(17):2789-2825.
[2] Lototskyy M V, Yartys V A, Pollet B G, et al. Metal hydride hydrogen compressors:A review[J]. International Journal of Hydrogen Energy, 2014, 39(11):5818-5851.
[3] Jia Y, Sun C H, Shen S H, et al. Combination of nanosizing and interfacial effect:Future perspective for designing Mg-based nanomaterials for hydrogen storage[J]. Renewable and Sustainable Energy Reviews, 2015, 44:289-303.
[4] Sadhasivam T, Kim H T, Jung S, et al. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications:A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72:523-534.
[5] Zhang J, Yan S, Qu H. Recent progress in magnesium hydride modified through catalysis and nanoconfinement[J]. International Journal of Hydrogen Energy, 2018, 43(3):1545-1565.
[6] Chen H P, Yu H, Zhang Q Q, et al. Enhancement in dehydriding performance of magnesium hydride by iron incorporation:A combined experimental and theoretical investigation[J]. Journal of Power Sources, 2016, 322:179-186.
[7] Tayeh T, Awad A S, Nakhl M, et al. Production of hydrogen from magnesium hydrides hydrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(7):3109-3117.
[8] Kushch S D, Kuyunko N S, Nazarov R S, et al. Hydrogengenerating compositions based on magnesium[J]. International Journal of Hydrogen Energy, 2011, 36(1):1321-1325.
[9] Huang M H, Ouyang L Z, Wang H, et al. Hydrogen generation by hydrolysis of MgH2 and enhanced kinetics performance of ammonium chloride introducing[J]. International Journal of Hydrogen Energy, 2015, 40(18):6145-6150.
[10] Zhao Z L, Zhu Y F, Li L Q. Efficient catalysis by MgCl 2 in hydrogen generation via hydrolysis of Mg-based hydride prepared by hydriding combustion synthesis[J]. Chemical Communications, 2012, 48(44):5509-5511.
[11] Awad A S, El-Asmar E, Tayeh T, et al. Effect of carbons (G and CFs), TM (Ni, Fe and Al) and oxides (Nb2O5 and V2O5) on hydrogen generation from ball milled Mg-based hydrolysis reaction for fuel cell[J]. Energy, 2016, 95:175-186.
[12] Chen J, Fu H, Xiong Y F, et al. MgCl2 promoted hydrolysis of MgH2 nanoparticles for highly efficient H2 generation[J]. Nano Energy, 2014, 10:337-343.
[13] Verbovytskyy Y V, Berezovets V V, Kytsya A R, et al. Hydrogen generation by the hydrolysis of MgH2[J]. Materials Science, 2020, 56(1):1-14.
[14] Hiroi S, Hosokai S, Akiyama T. Ultrasonic irradiation on hydrolysis of magnesium hydride to enhance hydrogen generation[J]. International Journal of Hydrogen Energy, 2011, 36(2):1442-1447.
[15] Huang M H, Ouyang L Z, Chen Z L, et al. Hydrogen production via hydrolysis of Mg-oxide composites[J]. International Journal of Hydrogen Energy, 2017, 42(35):22305-22311.
[16] Tegel M, Schöne S, Kieback B, et al. An efficient hydrolysis of MgH2-based materials[J]. International Journal of Hydrogen Energy, 2017, 42(4):2167-2176.
[17] Yang B, Zou J X, Huang T P, et al. Enhanced hydrogenation and hydrolysis properties of core-shell structured Mg-MOx(M=Al, Ti and Fe) nanocomposites prepared by arc plasma method[J]. Chemical Engineering Journal, 2019, 371:233-243.
[18] Mao J W, Huang T P, Panda S, et al. Direct observations of diffusion controlled microstructure transition in Mg-In/Mg-Ag ultrafine particles with enhanced hydrogen storage and hydrolysis properties[J]. Chemical Engineering Journal, 2021, 418:129301.
[19] Huang M H, Ouyang L Z, Ye J S, et al. Hydrogen generation via hydrolysis of magnesium with seawater using Mo, MoO2, MoO3 and MoS2 as catalysts[J]. Journal of Materials Chemistry A, 2017, 5(18):8566-8575.
[20] Ouyang L Z, Ma M L, Huang M H, et al. Enhanced hydrogen generation properties of MgH2-based hydrides by breaking the magnesium hydroxide passivation layer[J]. Energies, 2015, 8(5):4237-4252.
[21] Pighin S A, Urretavizcaya G, Bobet J L, et al. Nanostructured Mg for hydrogen production by hydrolysis obtained by MgH2 milling and dehydriding[J]. Journal of Alloys and Compounds, 2020, 827:154000.
[22] Huang J M, Duan R M, Ouyang L Z, et al. The effect of particle size on hydrolysis properties of Mg3La hydrides[J]. International Journal of Hydrogen Energy, 2014, 39(25):13563-13568.
[23] 陈明,汪元奎,马祥,等.一种固定式氢化镁水解自动控制装置及方法:202010177226.4[P]. 2020-07-07.
[24] 邹建新,秦悦,谷杰人.一种以氢化镁为储氢材料的制氢方法及装置:201811160760.3[P]. 2019-01-22.
[25] 徐波,沈煜遥,马冯琪,等.一种氢化镁水解制氢装置:202221165281.2[P]. 2022-07-26.
[26] Yu X B, Tang Z W, Sun D L, et al. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications[J]. Progress in Materials Science, 2017, 88:1-48.
[27] Chen H P, Han Z Y, Feng X, et al. Solid-phase hydrogen in a magnesium-carbon composite for efficient hydrogenation of carbon disulfide[J]. Journal of Materials Chemistry A, 2018, 6(7):3055-3062.
[28] Sun Y H, Shen C Q, Lai Q W, et al. Tailoring magnesium based materials for hydrogen storage through synthesis:Current state of the art[J]. Energy Storage Materials, 2018, 10:168-198.
[29] Schlapbach L, Griessen R, Gupta M. Hydrogen in intermetallic compounds I:Electronic, thermodynamic, and crystallographic properties, preparation[M]. Berlin:Springer Verlag, 1988.
[30] Dong S, Li C Q, Wang J H, et al. The"burst effect"of hydrogen desorption in MgH2 dehydrogenation[J/OL]. Journal of Materials Chemistry A, 2022, https://doi.org/10.1039/D2TA06458H.
[31] Aguey-Zinsou K F, Ares-Fernandez J R. Hydrogen in magnesium:New perspectives toward functional stores[J]. Energy&Environmental Science, 2010, 3(5), 526-543.
[32] Huang T P, Huang X, Hu C Z, et al. MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2[J]. Chemical Engineering Journal, 2021, 421:127851.
[33] Okamoto H. Mg-Ni (Magnesium-Nickel)[J]. Journal of Phase Equilibria and Diffusion, 2007, 28(3):303.
[34] Ghosh P, Mezbahul-Islam M, Medraj M. Critical assessment and thermodynamic modeling of Mg-Zn, Mg-Sn, Sn-Zn and Mg-Sn-Zn systems[J]. Calphad, 2012(36):28-43.
[35] Reilly J J, Wiswall R H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4[J]. Inorganic Chemistry, 1968, 7:2254-2256.
[36] Vajo J J, Mertens F, Ahn C C, et al. Altering hydrogen storage properties by hydride destabilization through alloy formation:LiH and MgH2 destabilized with Si[J]. Journal of Physical Chemistry B, 2004, 108(37):13977-13983.
[37] Chen X, Zou J X, Zeng X Q, et al. Hydrogen storage in Mg2Fe (Ni) H6 nanowires synthesized from coarse-grained Mg and nano sized γ-Fe (Ni) precursors[J]. International Journal of Hydrogen Energy, 2016, 41(33):14795-14806.
[38] Zhong H C, Wang H, Liu J W, et al. Altered desorption enthalpy of MgH2 by the reversible formation of Mg (In) solid solution[J]. Scripta Materialia, 2011, 65(4):285-287.
[39] Si T Z, Zhang J B, Liu D M, et al. A new reversible Mg3Ag-H2 system for hydrogen storage[J]. Journal of Alloys and Compounds, 2013, 581:246-249.
[40] Ouyang L Z, Qin F X, Zhu M. The hydrogen storage behavior of Mg3La and Mg3LaNi0.1[J]. Scripta Materialia, 2006, 55(12):1075-1078.
[41] 马建丽,王艳,陶占良,等.具有18电子结构的Mg2CoH5纳米晶制备及其储氢性能研究[J].无机化学学报, 2012, 28(4):657-661.
[42] Pozzo M, Alfè D. Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) surfaces[J]. International Journal of Hydrogen Energy, 2009, 34:1922-1930.
[43] Liu T, Zhang T W, Zhang X Z, et al. Synthesis and hydrogen storage properties of ultrafine Mg-Zn particles[J]. International Journal of Hydrogen Energy, 2011, 36:3515-3520.
[44] Liang G, Huot J, Boily S, et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems[J]. Journal of Alloys and Compounds, 1999, 292(1/2):247-252.
[45] Cui J, Liu J W, Wang H, et al. Mg-TM (TM:Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures:synthesis, hydrogen storage performance and catalytic mechanism[J]. Journal of Materials Chemistry A, 2014, 2(25):9645-9655.
[46] Cui J, Wang H, Liu J W, et al. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts[J]. Journal of Materials Chemistry A, 2013, 1(18):5603-5611.
[47] Lan Z Q, Fu H, Zhao R L, et al. Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride[J]. Chemical Engineering Journal, 2022, 431:133985.
[48] Liu M, Xiao X, Zhao S, et al. Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride[J]. Journal of Materials Chemistry A, 2019, 7(10):5277-5287.
[49] Meng Y, Ju S, Chen W, et al. Design of Bifunctional Nb/V Interfaces for Improving Reversible Hydrogen Storage Performance of MgH2[J]. Small Structures, 2022:2200119.
[50] Liu J C, Liu Y N, Liu Z B, et al. Effect of rGO supported NiCu derived from layered double hydroxide on hydrogen sorption kinetics of MgH2[J]. Journal of Alloys and Compounds, 2019, 789:768-776.
[51] Xian K C, Wu M H, Gao M X, et al. A unique nanoflake-shape bimetallic Ti-Nb oxide of superior catalytic effect for hydrogen storage of MgH2[J]. Small, 2022:2107013.
[52] Anbarasu S, Muthukumar P, Mishra S C. Thermal modeling of LmNi4.91Sn0.15 based solid state hydrogen storage device with embedded cooling tubes[J]. International Journal of Hydrogen Energy, 2014, 39(28):15549-15562.
[53] Dhaou H, Ben Khedher N, Mellouli S, et al. Improvement of thermal performance of spiral heat exchanger on hydrogen storage by adding copper fins[J]. International Journal of Thermal Sciences, 2011, 50(12):2536-2542.
[54] Sajanlal P R, Sreeprasad T S, Samal A K, et al. Anisotropic nanomaterials:Structure, growth, assembly, and functions[J]. Nano Reviews, 2011, 2(1):5883.
[55] Huot J, Liang G, Boily S, et al. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride[J]. Journal of Alloys and Compounds, 1999, 293:495-500.
[56] Zhu W, Panda S, Lu C, et al. Using a self-assembled two-dimensional mxene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2[J]. ACS Applied Materials&Interfaces, 2020, 12(45):50333-50343.
[57] Zhang M, Xiao X Z, Luo B S, et al. Superior de/hydrogenation performances of MgH2 catalyzed by 3D flowerlike TiO2@C nanostructures[J]. Journal of Energy Chemistry, 2020, 46:191-198.
[58] Barawi M, Granero C, Díaz-Chao P, et al. Thermal decomposition of non-catalysed MgH2 films[J]. International Journal of Hydrogen Energy, 2014, 39(18):9865-9870.
[59] Tan Z, Chiu C, Heilweil E J, et al. Thermodynamics, kinetics and microstructural evolution during hydrogenation of iron-doped magnesium thin films[J]. International Journal of Hydrogen Energy, 2011, 36(16):9702-9713.
[60] Borsa D M, Gremaud R, Baldi A, et al. Structural, optical, and electrical properties of MgyTi1-yHx thin films[J]. Physical Review B, 2007, 75(20):205408.
[61] Singh S, Eijt S W H, Zandbergen M W, et al. Nanoscale structure and the hydrogenation of Pd-capped magnesium thin films prepared by plasma sputter and pulsed laser deposition[J]. Journal of Alloys and Compounds, 2007, 441(1):344-351.
[62] Kumar S, Pavloudis T, Singh V, et al. Hydrogen flux through size selected Pd nanoparticles into underlying mg nanofilms[J]. Advanced Energy Materials, 2018, 8(4):1701326.
[63] Li W Y, Li C S, Ma H, et al. Magnesium nanowires:Enhanced kinetics for hydrogen absorption and desorption[J]. Journal of the American Chemical Society, 2007, 129(21):6710-6711.
[64] Jeon K J, Moon H R, Ruminski A M, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts[J]. Nature Materials, 2011, 10(4):286-290.
[65] Nielsen T K, Manickam K, Hirscher M, et al. Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials[J]. ACS Nano, 2009, 3(11):3521-3528.
[66] Jia Y, Sun C H, Cheng L N, et al. Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2[J]. Physical Chemistry Chemical Physics, 2013, 15(16):5814-5820.
[67] Xia G L, Tan Y B, Chen X W, et al. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene[J]. Advanced Materials, 2015, 27(39):5981-5988.
[68] Zhu W, Ren L, Lu C, et al. Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances[J]. ACS Nano, 2021, 15(11):18493-18504.
[69] Ma Z W, Panda S, Zhang Q Y, et al. Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold[J]. Chemical Engineering Journal, 2021, 406:126790.
[70] Ma Z W, Zhang Q Y, Panda S, et al. In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage[J]. Sustainable Energy&Fuels, 2020, 4(9):4693-4703.
[71] Zhang X, Liu Y F, Ren Z H, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides[J]. Energy&Environmental Science, 2021, 14:2302-2313.
[72] Sun Y H, Shen C Q, Lai Q W, et al. Tailoring magnesium based materials for hydrogen storage through synthesis:Current state of the art[J]. Energy Storage Materials, 2018, 10:168-198.
文章导航

/