[1] Shankar-Hari M, Phillips G S, Levy M L, et al. Developing a new definition and assessing new clinical criteria for septic shock:For the third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. The Journal of the American Medical Association, 2016, 315(8):775-787.
[2] Rizzo A N, Dudek S M. Endothelial glycocalyx repair:Building a wall to protect the lung during sepsis[J]. American Journal of Respiratory Cell and Molecular Biology, 2017, 56(6):687-688.
[3] Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis:Observations and hypotheses[J]. Lancet, 2020, 395(10235):1517-1520.
[4] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223):497-506.
[5] Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China:A descriptive study[J]. Lancet, 2020, 395(10223):507-513.
[6] Iba T, Levy J H, Connors J M, et al. The unique characteristics of COVID-19 coagulopathy[J]. Critical Care, 2020, 24(1):360.
[7] 张二飞,赵晓英,张莉,等.脓毒症引起心肌病的研究进展[J].中国心血管杂志, 2018, 23(5):433-436.
[8] Barnaby D P, Fernando S M, Ferrick K J, et al. Use of the low-frequency/high-frequency ratio of heart rate variability to predict short-term deterioration in emergency department patients with sepsis[J]. Emergency Medicine Journal, 2018, 35(2):96-102.
[9] Vallabhajosyula S, Jentzer J C, Geske J B, et al. New-onset heart failure and mortality in hospital survivors of sepsis-related left ventricular dysfunction[J]. Shock, 2018, 49(2):144-149.
[10] Liu P P, Blet A, Smyth D, et al. The science underlying COVID-19:Implications for the cardiovascular system[J]. Circulation, 2020, 142(1):68-78.
[11] Xu S C, Wu W, Zhang S Y. Manifestations and mechanism of SARS-CoV2 mediated cardiac injury[J]. International Journal of Biological Sciences, 2022, 18(7):2703-2713.
[12] 王今达,李志军,李银平.从"三证三法"辨证论治脓毒症[J].中国危重病急救医学, 2006(11):643-644.
[13] 曹书华,王今达,李银平.从"菌毒并治"到"四证四法"——关于中西医结合治疗多器官功能障碍综合征辨证思路的深入与完善[J].中国危重病急救医学, 2005(11):7-9.
[14] 刘清泉.对脓毒症中医病机特点及治法的认识[J].北京中医, 2007(4):198-200.
[15] 黎辉,武紫晖,张晓云.脓毒症的中医研究进展[J].中国中医急症, 2018, 27(9):1681-1683.
[16] 王东东,吴彦青,王晓鹏,等.脓毒症心肌损伤机制及中医药诊疗现状[J].北京中医药, 2018, 37(2):186-191.
[17] 王雪蕊,徐霄龙,白云静,等.强心一号复方对脓毒症小鼠心脏的保护作用及机制[J].中医杂志, 2019, 60(24):2133-2137.
[18] 夏文广,安长青,郑婵娟,等.中西医结合治疗新型冠状病毒肺炎34例临床研究[J].中医杂志, 2020, 61(5):375-382.
[19] 陈剑明,陈腾飞,连博,等.新型冠状病毒肺炎中医证候和证候要素分布特点的文献分析[J].首都医科大学学报, 2020, 41(6):901-907.
[20] Burzynski L C, Humphry M, Pyrillou K, et al. The coagulation and immune systems are directly linked through the activation of Interleukin-1α by thrombin[J]. Immunity, 2019, 50(4):1033-1042.
[21] Carré J E, Orban J C, Re L, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis[J]. American Journal of Respiratory and Critical Care Medicine, 2010, 182(6):745-751.
[22] 甄军海,李莉,严静.脓毒症心肌损伤生物标志物的研究进展[J].中华危重病急救医学, 2018, 30(7):699-702.
[23] Zheng Y Y, Ma Y T, Zhang J Y, et al. COVID-19 and the cardiovascular system[J]. Nature Reviews Cardiology, 2020, 17(5):259-260.
[24] Hamming I, Timens W, Bulthuis M L, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis[J]. Journal of Pathology, 2004, 203(2):631-637.
[25] 曾文美,毛璞,黄勇波,等.脓毒症预后影响因素分析及预后价值评估[J].中国中西医结合急救杂志, 2015, 22(2):118-123.
[26] Gaertner F, Massberg S. Blood coagulation in immunothrombosis-At the frontline of intravascular immunity[J]. Seminars in Immunology, 2016, 28(6):561-569.
[27] Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection[J]. Clinical Chemistry and Laboratory Medicine, 2020, 58(7):1116-1120.
[28] Arachchillage D, Laffan M. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia[J]. Journal of Thrombosis and Haemostasis, 2020, 18(5):1233-1234.
[29] Luo D, Szaba F M, Kummer L W, et al. Protective roles for fibrin, tissue factor, plasminogen activator inhibitor-1, and thrombin activatable fibrinolysis inhibitor, but not factor XI, during defense against the gram-negative bacterium Yersinia enterocolitica[J]. The Journal of Immunology, 2011, 187(4):1866-1876.
[30] Massberg S, Grahl L, von Bruehl M L, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases[J]. Nature Medicine, 2010, 16(8):887-896.
[31] Ito T, Thachil J, Asakura H, et al. Thrombomodulin in disseminated intravascular coagulation and other critical conditions-a multi-faceted anticoagulant protein with therapeutic potential[J]. Critical Care, 2019, 23(1):280.
[32] Veach R A, Liu Y, Zienkiewicz J, et al. Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles[J]. PLoS One, 2017, 12(6):e0179468.
[33] Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China:A single-centered, retrospective, observational study[J]. Lancet Respiratory Medicine, 2020, 8(5):475-481.
[34] Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients[J]. British Journal of Haematology, 2020, 189(3):428-437.
[35] 姚咏明,柴家科,林洪远.现代脓毒症理论与实践[M].北京:科学出版社, 2005.
[36] Suffredini A F. Myocardial dysfunction in sepsis:Clinical and experimental investigations[J]. Schweizerische Medizinische Wochenschrift, 1998, 128(39):1444-1452.
[37] 中国医师协会急诊医师分会,中国研究型医院学会休克与脓毒症专业委员会.中国脓毒症/脓毒性休克急诊治疗指南(2018)[J].临床急诊杂志, 2018, 19(9):567-588.
[38] Rhodes A, Evans L E, Alhazzani W, et al. Surviving sepsis campaign:International guidelines for management of sepsis and septic shock:2016[J]. Critical Care Medicine, 2017, 45(3):486-552.
[39] Stratton L, Berlin D A, Arbo J E. Vasopressors and inotropes in sepsis[J]. Emergency Medicine Clinics of North America, 2017, 35(1):75-91.
[40] 陆智炜,何群,蔡继明.左西孟旦早期应用对脓毒性休克患者的心肌抑制和血流动力学影响[J].海峡药学, 2020, 32(12):135-137.
[41] Meng J B, Hu M H, Lai Z Z, et al. Levosimendan versus dobutamine in myocardial injury patients with septic shock:A randomized controlled trial[J]. Medical Science Monitor, 2016(22):1486-1496.
[42] 何保杰,李保林,孙玉青.美托洛尔联合瑞舒伐他汀对脓毒症相关性心肌损伤的影响[J].实用中西医结合临床, 2020, 20(11):65-67.
[43] 王昆仑,莫为春,高明强,等.瑞舒伐他汀钙对老年脓毒症模型大鼠急性肺损伤的干预作用[J].中国老年学杂志, 2017, 37(11):2632-2633.
[44] The Lancet Haematology. COVID-19 coagulopathy:An evolving story[J]. Lancet Haematology, 2020, 7(6):e425.
[45] 彭锦,杨光虎,王亨,等.早期连续性肾脏替代治疗严重脓毒症合并急性左心衰患者的疗效[J].中华医院感染学杂志, 2020, 30(7):1007-1011.
[46] Wada K, Bunya N, Kakizaki R, et al. Successful use of veno-arterial extracorporeal membrane oxygenation for septic cardiomyopathy in a patient with pre-existing chronic heart failure[J]. Acute Medicine&Surgery, 2019, 6(3):301-304.
[47] 李元塔,周广裕,莫俊德.主动脉内球囊反搏术在脓毒性休克中的临床应用[J].沈阳医学院学报, 2016, 18(4):265-266.
[48] 李承羽,张晓雨,刘斯,等.血必净注射液治疗新型冠状病毒感染的肺炎(COVID-19)证据基础及研究前瞻[J].世界科学技术-中医药现代化, 2020, 22(2):242-247.
[49] 李旭,陈岩.血必净注射液治疗脓毒症心肌损伤临床观察[J].中国中医急症, 2016, 25(8):1582-1584.
[50] 陈德珠,钟建,冯艳,等.血必净注射液对脓毒症性心肌功能障碍的临床干预研究[J].哈尔滨医药, 2019, 39(6):549-550.
[51] 黄泽清,胡铁宏.参麦注射液的药理和临床研究进展[J].临床医药文献电子杂志, 2017, 4(14):2762-2763.
[52] 李兴华,程连房,李桂仙,等.心脉隆注射液治疗脓毒症性心功能障碍的疗效观察[J].世界中西医结合杂志, 2019, 14(12):1716-1719.
[53] 韩桢,王国兴.芪参活血颗粒在治疗脓毒症合并心肌损伤中的作用[J].中国医师杂志, 2020, 22(1):26-28.
[54] He S, Zhao J, Xu X, et al. Uncovering the molecular mechanism of the Qiang-Xin 1 Formula on sepsis-induced cardiac dysfunction based on systems pharmacology[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020:3815185.
[55] 邵丹,吴晖,郑剑珍,等.补阳还五汤对脓毒症心肌损伤患者T淋巴细胞亚群的影响[J].心血管病防治知识(学术版), 2019, 9(17):49-51.
[56] 龙敏,张玉琴,岳煜,等.黄连解毒汤联合西药治疗脓毒症心肌损伤疗效研究[J].陕西中医, 2022, 43(3):329-333.
[57] 周凤华,程赛博,张宇,等.黄连解毒汤通过调节性T细胞产生抗动脉粥样硬化作用[J].中国实验动物学报, 2016, 24(3):233-238.
[58] 晋金兰,张洪,刘倩,等.黄连素对脓毒症大鼠心肌损伤和心功能的保护作用及机制[J].中华医学杂志, 2020, 100(35):2779-2784.
[59] 李想,杨贵霞,沈锋,等.黄连素剂量依赖性抑制脂多糖刺激下大鼠Ⅱ型肺泡上皮细胞促凝和纤溶抑制因子的表达[J].中华危重病急救医学, 2021, 33(1):53-58.
[60] 林青伟,宋景春,曾庆波,等.大黄素对脓毒症大鼠凝血紊乱治疗的作用[J].东南国防医药, 2018, 20(5):464-470.
[61] 徐瑞明,邵峥谊,王大为.大黄素对脓毒症大鼠心肌损伤的保护作用[J].西部医学, 2020, 32(10):1443-1446.
[62] 洪秀芳,李莉,杨舟鑫,等.芍药苷干预对脓毒症大鼠心肌损伤的影响[J].中华内科杂志, 2022, 61(6):652-658.
[63] 杨澍,史海雯,高秀清,等.天然产物抗凝血作用研究进展[J].天津中医药, 2014, 31(5):318-320.
[64] 李青松,陈俊杰,李永宁,等.姜黄素抑制NLRP3炎症小体减轻早期脓毒症大鼠心肌细胞损伤的机制研究[J].中华急诊医学杂志, 2022, 31(2):173-178.
[65] 吴柳,蒋永艳,刘微,等.槲皮素通过PI3K/AKT/mTOR通路减轻脓毒症小鼠心肌损伤[J].中国急救医学, 2021, 41(3):238-243.
[66] 张志伟,赵永娟,叶金梅,等.人参皂苷Rg_2对内毒素性血管内凝血致心肌损伤及血液流变学的影响[J].中草药, 2002(9):49-51.
[67] 袁瑶薇,王文宇,白秀萍,等.人参皂苷Rg3通过调节自噬减轻脓毒症心肌损伤[J].现代生物医学进展, 2022, 22(8):1419-1423.
[68] 吴梅秋,邱名耀,林先萍,等.人参总皂苷经HIF-1α/HO-1信号通路减轻脓毒症大鼠心肌损伤的机制研究[J].中国急救医学, 2021, 41(3):244-249.
[69] 孙永,史兆博,刘美香,等.山药多糖对脓毒症大鼠心肌损伤及JAK2/STAT3信号通路的影响[J].中国动脉硬化杂志, 2022, 30(8):669-675.
[70] 高原,吕长俊.脓毒症与凝血-炎症网络研究进展[J].滨州医学院学报, 2010, 33(1):60-62.
[71] 戴林峰,王醒.脓毒症与凝血功能异常[J].东南大学学报(医学版), 2012, 31(3):359-362.