科技人文

量子信息革命引领未来科技革命

  • 乔笑斐 ,
  • 路昊明 ,
  • 高策
展开
  • 山西大学科学技术史研究所,太原 030006
乔笑斐,副教授,研究方向为物理学哲学、物理学史,电子信箱:qxf@sxu.edu.cn;路昊明(共同第一作者),硕士研究生,研究方向为物理学史,电子信箱:luhaoming1997@163.com

收稿日期: 2022-10-28

  修回日期: 2023-01-12

  网络出版日期: 2023-04-27

基金资助

国家社会科学基金重大项目(16ZDA113,19ZDA038);山西省社会经济统计科研课题(KYZH[2022]007);山西省哲学社会科学规划课题(2022YJ011)

Quantum information revolution leads the future revolution of science and technology

  • QIAO Xiaofei ,
  • LU Haoming ,
  • GAO Ce
Expand
  • Institute for History of Science and Technology, Shanxi University, Taiyuan 030006, China

Received date: 2022-10-28

  Revised date: 2023-01-12

  Online published: 2023-04-27

摘要

作为全球瞩目的新兴战略技术焦点,量子信息技术已经在量子计算与量子通信等领域取得了突破性进展。从科学史的角度来看,量子信息革命与发生在20世纪的第1次量子革命在原理和内涵等方面存在着显著区别,对未来的科技发展战略也有着直接影响。梳理了量子纠缠与量子信息技术的演变历程,分析了量子信息技术在科学、技术、哲学等多个层面的革命性特征,总结了量子信息革命对未来科技战略及科学发展模式的意义与启示。

本文引用格式

乔笑斐 , 路昊明 , 高策 . 量子信息革命引领未来科技革命[J]. 科技导报, 2023 , 41(3) : 81 -88 . DOI: 10.3981/j.issn.1000-7857.2023.03.009

Abstract

As a focus of emerging strategic technologies attracting global attention, quantum information technology has made breakthroughs in the fields of quantum computing and quantum communication. From the perspective of the history of science, quantum information revolution is significantly different from the first quantum revolution that occurred in the 20th century in terms of principle and connotation, and it also has a more direct impact on the future development strategy for science and technology. This study introduces the development history of quantum information technology, analyzes the revolutionary characteristics of quantum information technology from multiple aspects, and summarizes the influence and enlightenment of the quantum information revolution on future technology strategies and scientific models.

参考文献

[1] The Royal Swedish Academy of Sciences. Press release:The Nobel Prize in Physics 2022[EB/OL]. (2022-10-04)[2022-10-13]. https://www.nobelprize.org/prizes/physics/2022/press-release/.
[2] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete?[J].Physical Review, 1935, 47(10): 777-780.
[3] Schrödinger E. Discussion of probability relations between separated systems[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1935, 31(4): 555-563.
[4] Bell J S. On the einstein podolsky rosen paradox[J]. Physics Physique Fizika, 1964, 1(3): 195-200.
[5] Clauser J F, Horne M A, Shimony A, et al. Proposed experiment to test local hidden-variable theories[J]. Physical Review Letters, 1969, 23(15): 880-884.
[6] Freedman S J, Clauser J F. Experimental test of local hidden-variable theories[J]. Physical Review Letters, 1972,28(14): 938-941.
[7] 苏洪轶, 陈景灵. 贝尔不等式——2022年度诺贝尔物理学奖解读[J]. 科学通报, 2022, 67(36): 4326-4331.
[8] Aspect A, Grangier P, Roger G. Experimental tests of realistic local theories via Bell's theorem[J]. Physical review letters, 1981, 47(7): 460-463.
[9] Aspect A, Dalibard J, Roger G. Experimental test of Bell's inequalities using time-varying analyzers[J]. Physical Review Letters, 1982, 49(25): 1804-1807.
[10] Aspect A. Closing the door on Einstein and Bohr's quantum debate[EB/OL]. (2015-12-16) [2022-10-13]. https://physics.aps.org/articles/v8/123.
[11] Zeilinger A. Testing Bell's inequalities with periodic switching[J]. Physics Letters A, 1986, 118(1): 1-2.
[12] 施郁.量子纠缠之路:从爱因斯坦到2022年诺贝尔物理学奖[J]. 自然杂志, 2022, 44(6): 455-465.
[13] Weihs G, Jennewein T, Simon C, et al. Violation of Bell's inequality under strict Einstein locality conditions[J]. Physical Review Letters, 1998, 81(23): 5039.
[14] Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579.
[15] Boschi D, Branca S, De Martini F, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1998, 80(6): 1121.
[16] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen hannels[J]. Physical Review Letters, 1993, 70(13): 1895.
[17] 苏晓琴, 郭光灿 . 量子隐形传态[J]. 物理学进展, 2004(3): 259-273.
[18] Leggett A J. Nonlocal hidden-variable theories and quantum mechanics: An incompatibility theorem[J].Foundations of Physics, 2003, 33(10): 1469-1493.
[19] Gröblacher S, Paterek T, Kaltenbaek R, et al. An experimental test of non-local realism[J]. Nature, 2007, 446(7138): 871-875.
[20] 黄政新. 贝尔和莱格特不等式的实验检验与实在论[J].自然辩证法通讯, 2013, 35(4): 1-7.
[21] Milburn G J. Quantum technology (Frontiers of science)[M]. Sydney: Allen & Unwin, 1996.
[22] Milburn G J. Schrodinger's machines: The quantum technology reshaping everyday life[M]. New York: William Hazen Freeman and Company, 1997.
[23] Milburn G J. The Feynman processor: Quantum entanglement and the computing revolution[M]. Sydney: Allen & Unwin, 1998.
[24] Dowling J P, Milburn G J. Quantum technology: The second quantum revolution[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical,Physical and Engineering Sciences, 2003, 361(1809):1655-1674.
[25] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[26] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science,2017, 356(6343): 1140-1144.
[27] Li B, Cao Y, Li Y H, et al. Quantum state transfer over 1200 km assisted by prior distributed entanglement[J].Physical Review Letters, 2022, 128(17): 170501.
[28] 新华社 . 中国领跑第二次“量子革命”[EB/OL]. (2016-08-17) [2022-10-14]. http://news.cctv.com/2016/08/16/ARTIiMe6oUH3QoY8eIqXPYYN160816.shtml.
[29] 郭光灿 . 量子十问之十 第二次量子革命究竟要干什么[J]. 物理, 2019, 48(7): 464-465.
[30] 布鲁克海文国家实验室量子优越性联合设计中心.The second quantum revolution[EB/OL]. (2021-10-12)[2022-10-15]. https://www.bnl.gov/quantumcenter/research.php.
[31] Ashoori R C. Electrons in artificial atoms[J]. Nature,1996, 379(6564): 413-419.
[32] Editorials. Quanundrum[J]. Nature, 2014, 510(7505): 312.
[33] 施郁 . 继续量子科学革命[N]. 光明日报, 2017-05-25(13).
[34] BIG Bell Test Collaboration. Challenging local realism with human choices[J]. Nature, 2018, 557(7704): 212-216.
[35] Zeh H D. On the interpretation of measurement in quantum theory[J]. Foundations of Physics, 1970, 1(1): 69-76.
[36] Hardy L. Quantum mechanics, local realistic theories,and Lorentz-invariant realistic theories[J]. Physical Review Letters, 1992, 68(20): 2981-2984.
[37] Hardy L. Nonlocality for two particles without inequalities for almost all entangled states[J]. Physical Review Letters, 1993, 71(11): 1665-1668.
[38] 陈景灵. 量子力学那些事:量子纠缠、量子导引、贝尔非定域性[EB/OL]. (2018-06-08) [2022-10-15]. https://tech.sina.com.cn/d/i/2018-06-08/doc-ihcscwxa1601413.shtml.
[39] Chen M C, Wang C, Liu F M, et al. Ruling out real-valued standard formalism of quantum theory[J]. Physical Review Letters, 2022, 128(4): 040403.
[40] 杨振宁 . 20 世纪理论物理学发展的主旋律[J]. 品牌与标准化, 2009(2): 53-56.
[41] Weyl H. Eine neue erweiterung der relativitätstheorie[J].Annalen der Physik, 1919, 364(10): 101-133.
[42] Weyl H. Electron and gravitation[J]. Zeitschrift fürPhysik, 1929, 56: 330-352.
[43] Yang C N, Mills R L. Conservation of isotopic spin and isotopic gauge invariance[J]. Physical Review, 1954, 96(1): 191-195.
[44] Aharonov Y, Bohm D. Significance of electromagnetic potentials in the quantum theory[J]. Physical Review,1959, 115(3): 485-491.
[45] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,1984, 392(1802): 45-57.
[46] Lloyd S. Programming the universe: A quantum computer scientist takes on the Cosmos[M]. New York: Alfred Abraham Knopf, 2006: 175.
[47] Close F. Nothing: A very short introduction[M]. Oxford:Oxford University Press, 2009: 106.
[48] Almheiri A, Marolf D, Polchinski J, et al. Black holes:Complementarity or firewalls[J]. Journal of High Energy Physics, 2013, 2013(2): 1-20.
[49] 范内瓦·布什, 拉什·D. 霍尔特 . 科学:无尽的前沿[M].崔传刚, 译. 北京: 中信出版集团, 2021: 66-80.
[50] Leslie S W. The Cold War and American science: The military-industrial-academic complex at MIT and Stanford[M]. New York: Columbia University Press, 1993.
[51] 乔笑斐, 路昊明 . 苏联和美国在粒子物理领域的交流、合作与竞争[J]. 自然辩证法通讯, 2022, 44(10): 56-64.
[52] Hossenfelder S. The present phase of stagnation in the foundations of physics is not normal[EB/OL]. (2018-11-19) [2022-10-15]. https://backreaction.blogspot.com/2018/11/the-present-phase-of-stagnation-in.html.
[53] 刘露馨 . 美国科技战略的变革及前景[J]. 现代国际关系, 2021(10): 37-45.
[54] 吕凤先, 刘小平, 贾夏利. 近二十年美国量子信息科学战略中基础研究的政策部署和重要进展[J]. 世界科技研究与发展, 2022, 44(1): 12-24.
[55] 王贻芳 . 适应大装置建设需求 探索矩阵式管理模式[N]. 中国科学报, 2022-10-12(1).
[56] 徐立京 . 量子科技革命是重大历史机遇——对话中国科学院院士、南方科技大学校长薛其坤[N]. 经济日报,2021-01-17(12).
[57] 翟冬冬. 量子计算:第四次工业革命的引擎[N]. 科技日报, 2018-01-10(8).
[58] 王正汉 . 量子计算机:下一轮工业革命的引擎[J]. 人民论坛·学术前沿, 2021(7): 38-43.
[59] 胡鞍钢, 任皓.“复兴号”背后的科技强国梦[N]. 人民日报海外版, 2017-06-26(1)
文章导航

/