[1] The Royal Swedish Academy of Sciences. Press release:The Nobel Prize in Physics 2022[EB/OL]. (2022-10-04)[2022-10-13].
https://www.nobelprize.org/prizes/physics/2022/press-release/.
[2] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete?[J].Physical Review, 1935, 47(10): 777-780.
[3] Schrödinger E. Discussion of probability relations between separated systems[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1935, 31(4): 555-563.
[4] Bell J S. On the einstein podolsky rosen paradox[J]. Physics Physique Fizika, 1964, 1(3): 195-200.
[5] Clauser J F, Horne M A, Shimony A, et al. Proposed experiment to test local hidden-variable theories[J]. Physical Review Letters, 1969, 23(15): 880-884.
[6] Freedman S J, Clauser J F. Experimental test of local hidden-variable theories[J]. Physical Review Letters, 1972,28(14): 938-941.
[7] 苏洪轶, 陈景灵. 贝尔不等式——2022年度诺贝尔物理学奖解读[J]. 科学通报, 2022, 67(36): 4326-4331.
[8] Aspect A, Grangier P, Roger G. Experimental tests of realistic local theories via Bell's theorem[J]. Physical review letters, 1981, 47(7): 460-463.
[9] Aspect A, Dalibard J, Roger G. Experimental test of Bell's inequalities using time-varying analyzers[J]. Physical Review Letters, 1982, 49(25): 1804-1807.
[10] Aspect A. Closing the door on Einstein and Bohr's quantum debate[EB/OL]. (2015-12-16) [2022-10-13].
https://physics.aps.org/articles/v8/123.
[11] Zeilinger A. Testing Bell's inequalities with periodic switching[J]. Physics Letters A, 1986, 118(1): 1-2.
[12] 施郁.量子纠缠之路:从爱因斯坦到2022年诺贝尔物理学奖[J]. 自然杂志, 2022, 44(6): 455-465.
[13] Weihs G, Jennewein T, Simon C, et al. Violation of Bell's inequality under strict Einstein locality conditions[J]. Physical Review Letters, 1998, 81(23): 5039.
[14] Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579.
[15] Boschi D, Branca S, De Martini F, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1998, 80(6): 1121.
[16] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen hannels[J]. Physical Review Letters, 1993, 70(13): 1895.
[17] 苏晓琴, 郭光灿 . 量子隐形传态[J]. 物理学进展, 2004(3): 259-273.
[18] Leggett A J. Nonlocal hidden-variable theories and quantum mechanics: An incompatibility theorem[J].Foundations of Physics, 2003, 33(10): 1469-1493.
[19] Gröblacher S, Paterek T, Kaltenbaek R, et al. An experimental test of non-local realism[J]. Nature, 2007, 446(7138): 871-875.
[20] 黄政新. 贝尔和莱格特不等式的实验检验与实在论[J].自然辩证法通讯, 2013, 35(4): 1-7.
[21] Milburn G J. Quantum technology (Frontiers of science)[M]. Sydney: Allen & Unwin, 1996.
[22] Milburn G J. Schrodinger's machines: The quantum technology reshaping everyday life[M]. New York: William Hazen Freeman and Company, 1997.
[23] Milburn G J. The Feynman processor: Quantum entanglement and the computing revolution[M]. Sydney: Allen & Unwin, 1998.
[24] Dowling J P, Milburn G J. Quantum technology: The second quantum revolution[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical,Physical and Engineering Sciences, 2003, 361(1809):1655-1674.
[25] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[26] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science,2017, 356(6343): 1140-1144.
[27] Li B, Cao Y, Li Y H, et al. Quantum state transfer over 1200 km assisted by prior distributed entanglement[J].Physical Review Letters, 2022, 128(17): 170501.
[28] 新华社 . 中国领跑第二次“量子革命”[EB/OL]. (2016-08-17) [2022-10-14].
http://news.cctv.com/2016/08/16/ARTIiMe6oUH3QoY8eIqXPYYN160816.shtml.
[29] 郭光灿 . 量子十问之十 第二次量子革命究竟要干什么[J]. 物理, 2019, 48(7): 464-465.
[30] 布鲁克海文国家实验室量子优越性联合设计中心.The second quantum revolution[EB/OL]. (2021-10-12)[2022-10-15].
https://www.bnl.gov/quantumcenter/research.php.
[31] Ashoori R C. Electrons in artificial atoms[J]. Nature,1996, 379(6564): 413-419.
[32] Editorials. Quanundrum[J]. Nature, 2014, 510(7505): 312.
[33] 施郁 . 继续量子科学革命[N]. 光明日报, 2017-05-25(13).
[34] BIG Bell Test Collaboration. Challenging local realism with human choices[J]. Nature, 2018, 557(7704): 212-216.
[35] Zeh H D. On the interpretation of measurement in quantum theory[J]. Foundations of Physics, 1970, 1(1): 69-76.
[36] Hardy L. Quantum mechanics, local realistic theories,and Lorentz-invariant realistic theories[J]. Physical Review Letters, 1992, 68(20): 2981-2984.
[37] Hardy L. Nonlocality for two particles without inequalities for almost all entangled states[J]. Physical Review Letters, 1993, 71(11): 1665-1668.
[38] 陈景灵. 量子力学那些事:量子纠缠、量子导引、贝尔非定域性[EB/OL]. (2018-06-08) [2022-10-15].
https://tech.sina.com.cn/d/i/2018-06-08/doc-ihcscwxa1601413.shtml.
[39] Chen M C, Wang C, Liu F M, et al. Ruling out real-valued standard formalism of quantum theory[J]. Physical Review Letters, 2022, 128(4): 040403.
[40] 杨振宁 . 20 世纪理论物理学发展的主旋律[J]. 品牌与标准化, 2009(2): 53-56.
[41] Weyl H. Eine neue erweiterung der relativitätstheorie[J].Annalen der Physik, 1919, 364(10): 101-133.
[42] Weyl H. Electron and gravitation[J]. Zeitschrift fürPhysik, 1929, 56: 330-352.
[43] Yang C N, Mills R L. Conservation of isotopic spin and isotopic gauge invariance[J]. Physical Review, 1954, 96(1): 191-195.
[44] Aharonov Y, Bohm D. Significance of electromagnetic potentials in the quantum theory[J]. Physical Review,1959, 115(3): 485-491.
[45] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,1984, 392(1802): 45-57.
[46] Lloyd S. Programming the universe: A quantum computer scientist takes on the Cosmos[M]. New York: Alfred Abraham Knopf, 2006: 175.
[47] Close F. Nothing: A very short introduction[M]. Oxford:Oxford University Press, 2009: 106.
[48] Almheiri A, Marolf D, Polchinski J, et al. Black holes:Complementarity or firewalls[J]. Journal of High Energy Physics, 2013, 2013(2): 1-20.
[49] 范内瓦·布什, 拉什·D. 霍尔特 . 科学:无尽的前沿[M].崔传刚, 译. 北京: 中信出版集团, 2021: 66-80.
[50] Leslie S W. The Cold War and American science: The military-industrial-academic complex at MIT and Stanford[M]. New York: Columbia University Press, 1993.
[51] 乔笑斐, 路昊明 . 苏联和美国在粒子物理领域的交流、合作与竞争[J]. 自然辩证法通讯, 2022, 44(10): 56-64.
[52] Hossenfelder S. The present phase of stagnation in the foundations of physics is not normal[EB/OL]. (2018-11-19) [2022-10-15].
https://backreaction.blogspot.com/2018/11/the-present-phase-of-stagnation-in.html.
[53] 刘露馨 . 美国科技战略的变革及前景[J]. 现代国际关系, 2021(10): 37-45.
[54] 吕凤先, 刘小平, 贾夏利. 近二十年美国量子信息科学战略中基础研究的政策部署和重要进展[J]. 世界科技研究与发展, 2022, 44(1): 12-24.
[55] 王贻芳 . 适应大装置建设需求 探索矩阵式管理模式[N]. 中国科学报, 2022-10-12(1).
[56] 徐立京 . 量子科技革命是重大历史机遇——对话中国科学院院士、南方科技大学校长薛其坤[N]. 经济日报,2021-01-17(12).
[57] 翟冬冬. 量子计算:第四次工业革命的引擎[N]. 科技日报, 2018-01-10(8).
[58] 王正汉 . 量子计算机:下一轮工业革命的引擎[J]. 人民论坛·学术前沿, 2021(7): 38-43.
[59] 胡鞍钢, 任皓.“复兴号”背后的科技强国梦[N]. 人民日报海外版, 2017-06-26(1)