专题:制造强国建设

先进封装中硅通孔(TSV)铜互连电镀研究进展

  • 谌可馨 ,
  • 高丽茵 ,
  • 许增光 ,
  • 李哲 ,
  • 刘志权
展开
  • 1. 深圳先进电子材料国际创新研究院,深圳 518103
    2. 中国科学院深圳先进技术研究院,深圳 518055
    3. 中国科学技术大学材料科学与工程学院,沈阳 110016
谌可馨,博士研究生,研究方向为微电子封装材料,电子信箱:kx.chen@siat.ac.cn

收稿日期: 2022-12-23

  修回日期: 2023-02-10

  网络出版日期: 2023-03-27

基金资助

国家自然科学基金项目(62104243,62274172);广东省自然科学基金项目(2022A1515011485)

Progress of the interconnected copper electroplating in TSV (through silicon via) of advanced packaging

  • CHEN Kexin ,
  • GAO Liyin ,
  • XU Zengguang ,
  • LI Zhe ,
  • LIU Zhiquan
Expand
  • 1. Shenzhen Institute of Advanced Electronic Materials, Shenzhen 518103, China
    2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
    3. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

Received date: 2022-12-23

  Revised date: 2023-02-10

  Online published: 2023-03-27

摘要

随着摩尔定律接近极限,超摩尔定律的2.5D/3D封装登上历史舞台。硅通孔(through silicon via,TSV)是实现多维封装纵向互连的关键技术,也是目前高端电子制造领域的重要代表之一。概述了TSV铜互连的关键技术,包括铜电镀液、电镀工艺和研究方法。认为TSV电镀铜技术难点在于无缺陷填充,而添加剂是实现无缺陷填充的关键组分。归纳了TSV电镀铜的加速剂、抑制剂以及整平剂等多种添加剂,指出随着 TSV深宽比的不断提高,对电镀工艺提出了更高的要求。介绍了仿真计算、电化学测试等电镀液添加剂作用机理的研究手段。随着研究手段的不断升级,对添加剂作用机理研究更加深入透彻,确保了高深宽比TSV镀铜的无缺陷填充,进一步促进了先进封装的发展。

本文引用格式

谌可馨 , 高丽茵 , 许增光 , 李哲 , 刘志权 . 先进封装中硅通孔(TSV)铜互连电镀研究进展[J]. 科技导报, 2023 , 41(5) : 15 -26 . DOI: 10.3981/j.issn.1000-7857.2023.05.002

Abstract

As Moore's law approaches to the limit, "More than Moore" for 2.5D/3D packaging is entering its historical arena. Through silicon via (TSV) is one of the important representatives in high-end electronics advanced packaging. This paper focuses on the copper plating process which realizes electrical interconnection in TSV technology and systematically summarizes the composition of the formula of copper plating solutions. The key difficulty of the copper plating process lies in the defect-free filling of TSV, and the selection of additives is particularly important. A guide for selection of electroplating solution for TSV metallization electroplating process is then provided. In addition, the external electric field and other process conditions imposed on the plating solution during the plating process will also affect the quality of filling vias. Therefore, TSV copper plating processes of the research teams at home and abroad are summarized for selection of a copper plating process. Finally, the characterization methods for studying the action mechanism of additives in electroplating solutions based on computational simulation and electrochemical testing are briefly summarized, and the progress and shortcomings of current research methods on additives in electroplating solution are discussed.

参考文献

[1] Moore G E. Cramming more components onto integrated circuits[J]. Electronics, 1965, 38(8): 114.
[2] Moore G E. Progress in digital integrated electronics[C]//Proceedings of the Internaional Electron Devices Meeting.Piscataway NJ: IEEE, 1975.
[3] Lee M, Pak J S, Kim J. Electrical design of through silicon via[M]. London: Springer Dordrecht, 2014: 3-4.
[4] 魏红军, 段晋胜. TSV制程关键工艺设备技术及发展[J].电子工业专用设备, 2014, 43(5): 7-10.
[5] Lau J H. Semiconductor advanced packagin[M]. Singapore: Springer Singapore, 2021: 313-314.
[6] Kim H C, Kim J J. Through-silicon-via filling process using Cu electrodeposition[J]. Korean Chemical Engineering Research, 2016, 54(6): 723-733.
[7] Kim S H, Braun T M, Lee H J, et al. Microstructure and texture in copper filled millimeter scale through silicon vias[J]. Journal of The Electrochemical Society, 2022, 169(3): 032508.
[8] Roh M H, Sharma A, Lee J H, et al. Extrusion Suppression of TSV filling metal by Cu-W electroplating for three-dimensional microelectronic packaging[J]. Metallurgical and Materials Transactions A, 2015, 46(5): 2051-2062.
[9] Josell D, Moffat T P. Superconformal bottom-up nickel deposition in high aspect ratio through silicon vias[J].ECS Transactions, 2016, 163(7): 322.
[10] Braun T M, Kim S H, Lee H J, et al. Superconformal nickel deposition in through silicon vias: Experiment and prediction[J]. Journal of The Electrochemical Society, 2018, 165(7): 291-300.
[11] Josell D, Silva M, Moffat T P. Superconformal bottomup cobalt deposition in high aspect ratio through silicon vias[J]. ECS Transactions, 2016, 163(14): D809.
[12] Josell D, Moffat T P. Superconformal bottom-up gold deposition in high aspect ratio through silicon vias[J]. Journal of the Electrochemical Society, 2017, 164(6): D327.
[13] Wang X, Xiong M, Chen Z, et al. Wideband capacitance evaluation of silicon-insulator-silicon through-silicon-vias for 3D integration applications[J]. Proceedings of the IEEE Electron Device Letters, 2016, doi: 10.1109/LED.2015.2506551.
[14] Ogutu P, Fey E, Dimitrov N. Superconformal filling of high aspect ratio through glass vias (TGV) for interposer applications using TNBT and NTBC additives[J]. Journal of the Electrochemical Society, 2015, 162(9): D457.
[15] Ogutu P, Fey E, Dimitrov N. Superconformal filling of through vias in glass interposers[J]. ECS Electrochemistry Letters, 2014, 3(8): D30.
[16] Kim S H, Lee H J, Braun T M, et al. Effect of chloride on microstructure in Cu filled microscale through silicon vias[J]. Journal of the Electrochemical Society, 2021, 168(11): 112501.
[17] Moffat T P, Josell D. Extreme bottom-up superfilling of through-silicon-vias by damascene processing: Suppressor disruption, positive feedback and turing patterns[J].Journal of the Electrochemical Society, 2012, 159(4):D208.
[18] Moffat T P, Wheeler D, Huber W H, et al. Superconformal electrodeposition of copper[J]. Electrochemical and Solid-State Letters, 2001, 4(4): C26.
[19] Wang F L, Le Y P. Experiment and simulation of single inhibitor SH110 for void-free TSV copper filling[J]. Scientific Reports, 2021, 11(1): 12108.
[20] 冀林仙 . 基于多物理场耦合的印制电路电镀铜互连研究[D]. 成都: 电子科技大学, 2016.
[21] Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: A surface-enhanced raman study[J]. The Journal of Physical Chemistry B, 2003, 107(35): 9415-9423.
[22] Josell D, Moffat T P. Superconformal copper deposition in through silicon vias by suppression-breakdown[J].Journal of the Electrochemical Society, 2018, 165(2):23-30.
[23] Josell D, Moffat T P. Extreme bottom-up filling of through silicon vias and damascene trenches with gold in a sulfite electrolyte[J]. Journal of the Electrochemical Society, 2013, 160(12): D3035.
[24] Josell D, Wheeler D, Moffat T P. Modeling extreme bottom-up filling of through silicon vias[J]. Journal of the Electrochemical Society, 2012, 159(10): D570.
[25] Wang F, Wang F L, Liu X M. The key role of suppressor diffusion in defect-free filling of the through-silicon-via with high depth[J]. Journal of Micromechanics and Microengineering, 2019, 29(5): 055005.
[26] Xu J Y, Wang S X, Su Y Z, et al. Investigation of through-hole copper electroplating with methyl orange as a special leveler[J]. Journal of Electrochemistry,2022, 28(7): 2213003.
[27] Tang J, Zhu Q S, Zhang Y, et al. Copper bottom-up filling for through silicon via (TSV) using single JGB additive[J]. ECS Electrochemistry Letters, 2015, 4(9): 28-30.
[28] Wang F L, Zeng P, Wang Y, et al. High-speed and high-quality TSV filling with the direct ultrasonic agitation for copper electrodeposition[J]. Microelectronic Engineering, 2017, 180(5): 30-34.
[29] 郑莉 . 调控铜沉积的有机添加剂体系及其电化学性能研究[D]. 成都: 电子科技大学, 2020.
[30] Sung M, Kim S H, Lee H J, et al. Working mechanism of iodide ions and its application to Cu microstructure control in through silicon via filling[J]. Electrochimica Acta, 2019, 295(1): 224-229.
[31] Sung M, Yoon Y, Hong J, et al. Bromide ion as a leveler for high-speed TSV filling[J]. Journal of the Electrochemical Society, 2019, 166(13): D546.
[32] Wang S, Lee S W R. Fast copper plating process for Through Silicon Via (TSV) filling[C]//Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. New York: American Society of Mechanical Engineers, 2011: 855-863.
[33] Tsai T H, Huang J H. Electrochemical investigations for copper electrodeposition of through-silicon via[J]. Microelectronic Engineering, 2011, 88(2): 195-199.
[34] Yoshimi S, Fujimoto K, Akazawa M, et al. Development of 300 mm TSV interposer with redistribution layers on both sides using MEMS processes[C]// Proceedings of 2013 IEEE 63rd Electronic Components and Technology Conference. Piscataway NJ: IEEE, 2013: 2168-2172.
[35] Li H Y, Liao E, Pang X F, et al. Fast electroplating TSV process development for the via-last approach[C]//Proceedings of the 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC). Piscataway NJ: IEEE, 2010: 777-780.
[36] Wang L, Cai J, Wang Q, et al. Electroplating Cu on ALD TiN for high aspect ratio TSV[C]//Proceedings of the 2015 16th International Conference on Electronic Packaging Technology (ICEPT). Piscataway NJ: IEEE,2015: 676-680.
[37] Xiao H B, Wang F L, Wang Y, et al. Effect of ultrasound on copper filling of high aspect ratio through-silicon via (TSV)[J]. Journal of the Electrochemical Society,2017, 164(4): D126.
[38] 纪执敬, 凌惠琴, 吴培林, 等 . 玻璃通孔三维互连镀铜填充技术发展现状[J]. 电化学, 2022, 28(6): 2104461.
[39] Wang Z Y, Wang H, Cheng P, et al. Simultaneous filling of through silicon vias (TSVs) with different aspect ratios using multi-step direct current density[J]. Journal of Micromechanics and Microengineering, 2014, 24(8):085013.
[40] Hong S C, Lee W G, Kim W J, et al. Reduction of defects in TSV filled with Cu by high-speed 3-step PPR for 3D Si chip stacking[J]. Microelectronics Reliability,2011, 51(12): 2228-2235.
[41] Wang F L, Zhao Z P, Nie N T, et al. Dynamic through-silicon-via filling process using copper electrochemical deposition at different current densities[J]. Scientific Reports, 2017, 7(1): 46639.
[42] Wang F, Wang F L, Liu X M, et al. Experimental study of current density in copper filling process within deep through-silicon vias with high aspect ratio[J]. Journal of Micromechanics and Microengineering, 2019, 29(12):125013.
[43] Delbos E, Omnès L, Etcheberry A. Bottom-up filling optimization for efficient TSV metallization[J]. Microelectronic Engineering, 2010, 87: 514-516.
[44] Jin S, Seo S, Wang G, et al. Electrodeposition of nanotwin Cu by pulse current for Through-Si-Via (TSV) Process[J]. Journal of Nanoscience and Nanotechnology,2016, 16(5): 5410-5414.
[45] Shi S, Wang X F, Xu C L. Simulation and fabrication of two Cu TSV electroplating methods for wafer-level 3D integrated circuits packaging[J]. Sensors and Actuators A: Physical, 2013, 203: 52-61.
[46] Kim J, Cui J, Fichthorn K A. Solution-phase growth of Cu nanowires with aspect ratios greater than 1000: Multiscale theory[J]. ACS Nano, 2021, 15(11): 18279-18288.
[47] Kobayashi K, Sano A, Akahoshi H, et al. Trench and via filling profile simulations for copper electroplating process[C]//Proceedings of the IEEE 2000 International Interconnect Technology Conference. Piscataway NJ:IEEE, 2000: 34-36.
[48] Tenno R, Pohjoranta A. An ALE model for prediction and control of the microvia fill process with two additives[J]. Journal of the Electrochemical Society, 2008, 155(5): D383
[49] Chen Z H, Liu S. Simulation of copper electroplating fill process of through silicon via[C]//Proceedings of the 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging. Piscataway NJ: IEEE, 2010: 433-437.
[50] Zhu Y H, Ma S L, Sun X, et al. Numerical modelling and experimental verification of through silicon via (TSV) filling in presence of additives[J]. Microelectronic Engineering, 2014, 117: 8-12.
[51] Zhang Y Z, Sun Y N, Ding G F, et al. Numerical simulation and mechanism analysis of through-silicon via (TSV) filling using an Arbitrary Lagrange-Eulerian (ALE) method[J]. Journal of the Electrochemical Society,2015,162(10): D540.
[52] Wang F L, Zhao Z P, Wang F, et al. A novel model for through-silicon via (TSV) filling process simulation considering three additives and current density effect[J].Journal of Micromechanics and Microengineering, 2017,27(12): 125017.
[53] Wang F, Zhao Z P, Nie N T, et al. Effect of via depth on the TSV filling process for different current densities[J]. Journal of Micromechanics and Microengineering,2018, 28(4): 045004.
[54] 孙云娜, 吴永进, 谢东东, 等 . 硅通孔内铜电沉积填充机理研究进展[J]. 电化学, 2022, 28(7): 2213001.
[55] Song C S, Wu H, Jing X M, et al. Numerical simulation and experimental verification of copper plating with different additives for through silicon vias[C]//Proceedings of the 2012 4th Electronic System-Integration Technology Conference. Piscataway NJ: IEEE, 2012: 1-6.
[56] Wu H Y, Wang Y, Li Z Y, et al. Investigations of the electrochemical performance and filling effects of additives on electroplating process of TSV[J]. Scientific Reports, 2020, 10(1): 9204.
[57] 卢跃 . 铜互连镀铜添加剂的电化学机理研究[D]. 上海:上海交通大学材料学, 2013.
[58] 张媛, 鲁冠斌, 王旭东, 等 . 胺结构调控硅通孔电镀铜单组分添加剂的性能[J]. 半导体技术, 2022, 47(10):796-803.
[59] Tomie M, Akita T, Irita M, et al. Transitional additive adsorption with co-addition of suppressor and leveler for copper TSV filling[J]. Journal of the Electrochemical Society, 2020, 167(8): 082513.
[60] Akita T, Tomie M, Ikuta R, et al. Observation of the behavior of additives in copper electroplating using a microfluidic device[J]. Journal of the Electrochemical Society, 2018, 166(1): D3058.
[61] Kondo K, Akolkar R N, Barke D P, et al. Copper electrodeposition for nanofabrication of electronics devices[M].New York: Springer Dordrecht Heidelberg, 2014: 38-39.
文章导航

/