专题:长三角地热

长江大通断面水空调适宜性分析

  • 陆宝宏 ,
  • 冯新月 ,
  • 羊艳 ,
  • 裴颖 ,
  • 孔彦龙 ,
  • 沈文龙 ,
  • 宋杨 ,
  • 庞忠和
展开
  • 1. 河海大学水文水资源学院,南京 210098
    2. 水利部水利水电规划设计总院,北京 100120
    3. 安徽省水利水电勘测设计研究总院有限公司,合肥 230088
    4. 中国科学院地质与地球物理研究所,北京 100029
陆宝宏,教授,研究方向为水文水资源,电子信箱:lubaohong@126.com;冯新月(共同第一作者),博士研究生,研究方向为水文水资源,电子信箱:fengxinyuehhu@126.com

收稿日期: 2022-10-23

  修回日期: 2023-03-10

  网络出版日期: 2023-07-11

基金资助

国家自然科学基金长江水科学研究联合基金项目(U22402181009321);中国科学院学部咨询评议项目(2020-DX03-B-007)

Suitability analysis of water conditioning in Datong section of Yangtze River

  • LU Baohong ,
  • FENG Xinyue ,
  • YANG Yan ,
  • PEI Ying ,
  • KONG Yanlong ,
  • SHEN Wenlong ,
  • SONG Yang ,
  • PANG Zhonghe
Expand
  • 1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
    2. Water resources and Hydropower Planning and Design General Institute,Beijing 100120,China
    3. Anhui Water Resources and Hydropower Survey, Design and Research Institute Co., Ltd., Hefei 230088, China
    4. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Received date: 2022-10-23

  Revised date: 2023-03-10

  Online published: 2023-07-11

摘要

以长江大通水文站断面为例,开展长江地表水地热资源量研究。利用径流不均匀系数、Mann-Kendall法、滑动T检验法等方法,探讨了大通站水文情势变化,发现大通断面流量的集中期在7月上旬,多年平均径流量为9.05×1011 m3;分析了长江大通断面2004—2021年气温及水温实测资料,发现月均最低、最高气温分别在1月与7月,多年平均水温为18.9℃,水温低于5℃天数为1.5天,较适宜采用容积式地表水制热/冷机组。选取11月至翌年2月为制热月份、6月至 9月为制冷月份,依据气温与水温的温差分别计算制热和制冷月份的地热资源总量分别为 3.08×1018 J、1.67×1018 J;根据水温变化控制阈值,计算出仅大通水文站一个断面制热与制冷月份的可采地热资源量分别为1.28×1017 J、6.71×1017 J,总的可采地热资源量相当于减排CO2约16604万 t。

本文引用格式

陆宝宏 , 冯新月 , 羊艳 , 裴颖 , 孔彦龙 , 沈文龙 , 宋杨 , 庞忠和 . 长江大通断面水空调适宜性分析[J]. 科技导报, 2023 , 41(12) : 75 -85 . DOI: 10.3981/j.issn.1000-7857.2023.12.008

Abstract

As a kind of building heating and cooling technology, surface water source heat pump (commonly known as "water-cooled air-conditioning") technology has been applied gradually. It provides a new way to solve the problem of refrigeration (heat) in the hot summer and cold winter areas south of the policy heating line in China. The heat energy project using the Yangtze River water is developing in scale. But theoretical research on resource potential, utilization conditions and environmental effects has not kept up. In order to study the geothermal resources contained in the Yangtze River water source, the Datong Station of Yangtze river was selected as the representative section. The means of non-uniformity coefficient of runoff, Mann-Kendall method and the moving T-test method were used to analyze the hydrological regime of the Datong Station. The average annual runoff of Datong station was calculated as 905.36 billion cubic meters, and the concentration of water flow occurs in early July. According to the data of air temperature and water temperature from 2004 to 2021, it is concluded that the monthly average temperature is the highest in July and the lowest in January. The annual average water temperature is 18.9℃, and the annual average of the days when the water temperature is lower than 5℃ is 1.5 days. Therefore, it is suitable to use volumetric surface water units for heating/cooling. The water quality of Datong section is above Class II, so it meets the standard. To sum up, the water quantity, temperature and quality are suitable for the development and utilization of geothermal energy from river sources. On this basis, according to the temperature difference between air temperature and water temperature, the total geothermal resources of Datong Station are calculated as 3.08×1018 J from November to February and 1.67×1018 J from June to September. According to the control threshold of water temperature variation in the next section, the recoverable resources were calculated as 1.28×1018 J from November to February and 6.71×1017 J from June to September. The total amount of recoverable geothermal resources is equivalent to the emission reduction of about 166.04 million tons of CO2.

参考文献

[1] 孙旭东, 张蕾欣, 张博 . 碳中和背景下我国煤炭行业的发展与转型研究[J]. 中国矿业, 2021, 30(2): 1-6.
[2] Long J, Huang S. Study on energy efficiency evaluation method of cooling water system of surface water source heat pump[C]//Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning, Vol 2: Hvac&r Component and Energy System. Berlin: Springer-Verlag Berlin, 2014: 333-340.
[3] 汪峰. 长江安徽段径流演变规律分析及防洪减灾措施研究[D]. 南京: 河海大学水利水电学院, 2014.
[4] 李沫 . 热泵用江水水温数据生成方法及其应用研究[D].重庆: 重庆大学城市建设与环境工程学院, 2014.
[5] 郭巧玲, 杨云松, 畅祥生, 等. 1957—2008年黑河流域径流年内分配变化[J]. 地理科学进展, 2011, 30(5): 550-556.
[6] 杨远东 . 河川径流年内分配的计算方法[J]. 地理学报, 1984, 39(2): 218-227.
[7] 周陈超, 贾绍凤, 燕华云, 等. 近50 a以来青海省水资源变化趋势分析[J]. 冰川冻土, 2005,27(3): 432-437.
[8] 肖淼元, 李国芳, 王伟杰 . 长江口潮位一致性检验与修正方法研究[J]. 长江科学院院报, 2013, 30(4): 6-10.
[9] 欧阳卫, 王筱, 周维博 . 1956—2016 年沣河径流量变化特征分析[J]. 水资源与水工程学报, 2021, 32(3): 118-123.
[10] 吕琳莉, 李朝霞 . 雅鲁藏布江中下游径流变异性识别[J]. 水力发电, 2013, 39(5): 12-15.
[11] 吴艳菊 . 地表水源热泵适宜性综合评价及规划研究[D]. 重庆: 重庆大学, 2009.
[12] Lv N, Zhang Q, Wu D, Chen Z. Surface water source heat pump air conditioning system simulation and operation performance analysis[C]//9th International Symposium on Heating, Ventilation and Air Conditioning (ishvac) Joint with the 3rd International Conference on Building Energy and Environment (cobee). Amsterdam: Elsevier Science Bv, 2015, 121: 1880-1886.
[13] Lv N, Zhang Q, Chen Z, Wu D. Simulation and analysis on thermodynamic performance of surface water source heat pump system[J]. Building Simulation, 2017, 10(1): 65-73.
[14] Si P, Li A, Rong X, et al. New optimized model for water temperature calculation of river-water source heat pump and its application in simulation of energy consumption[J]. Renewable Energy, 2015, 84: 65-73.
[15] Zou S, Xie X. Simplified model for coefficient of performance calculation of surface water source heat pump[J]. Applied Thermal Engineering, 2017, 112: 201-207.
[16] 中华人民共和国建设部 . GB 50366—2005 地源热泵系统工程技术规范[S]. 北京: 中国建筑工业出版社, 2005.
[17] GB/T 3838—2002 地表水环境质量标准[S]. 北京: 中国环境出版集团, 2022.
[18] 王渺林 . 江水水源热泵项目取用水影响与用水量指标分析[C]//2022(第十届)中国水生态大会论文集 . 南阳:[出版者不详], 2022: 8.
[19] 乔雪媛, 石朋, 陈喜, 等 . 不同气候区代表性江河径流变化特征分析[J]. 西安理工大学学报, 2014, 30(3): 357-365.
[20] 杨远东, 王永红, 蔡斯龙, 等 . 1960—2017 年珠江流域下游径流年际与年内变化特征[J]. 水土保持通报, 2019, 39(5): 23-31.
[21] 王子云 . 长江水源热泵换热器研究[D]. 重庆: 重庆大学, 2008.
[22] 谭洪卫, 李潇潇, 朱金明, 等 . 黄浦江水温变化规律与上海地区江水源热泵节能潜力研究[C]//上海市制冷学会 2007 年学术年会论文集 . 上海: 上海制冷学会, 2007: 371-374.
[23] 蔡其华. 长江流域节水与水资源可持续利用[J]. 中国水利, 2005(13): 180-183.
[24] 杨正武, 戎向阳, 闵晓丹. 江水源热泵系统取水最佳温差设计研究[J]. 制冷与空调, 2011, 25(3): 267-269.
文章导航

/