专稿

新型镍氧超导体的理论研究

  • 姚道新
展开
  • 1. 中山大学物理学院, 广州 510275;
    2. 广东省磁电物性分析与器件重点实验室, 广州 510275;
    3. 广东省磁电物性基础学科研究中心, 广州 510275
姚道新,教授,研究方向为关联电子体系、高温超导、量子磁性、量子蒙特卡罗、拓扑物质等,电子信箱:yaodaox@mail.sysu.edu.cn

收稿日期: 2024-03-25

  修回日期: 2024-05-14

  网络出版日期: 2024-06-28

基金资助

国家重点研发计划项目(2022YFA1402802,2018YFA0306001);国家自然科学基金项目(92165204);广东特支计划领军人才项目(201626003)

Theoretical study of La3Ni2O7 and La4Ni3O10

  • YAO Daoxin
Expand
  • 1. School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
    2. Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Guangzhou 510275, China;
    3. Guangdong Research Center for Magnetoelectric Physics, Guangzhou 510275, China

Received date: 2024-03-25

  Revised date: 2024-05-14

  Online published: 2024-06-28

摘要

高压下双层镍氧超导体的发现引发国际上广泛的关注,理论研究发挥很大的作用。目前,理论计算表明La3Ni2O7中镍的2个eg轨道对超导的产生起到关键作用,同时氧的p轨道也出现在费米面上,相应的多轨道模型已经提出。各种计算表明,新型镍氧超导体可能具有s±波的特性,对其进行掺杂或加压可以改变超导配对特性。基于强关联相互作用的模型,已经能够较好地解释实验观测的现象。顶点氧空位的存在对于超导的发生会有明显的影响。三层镍氧超导体的发现进一步丰富了镍氧超导体的家族,目前其电子能带结构、多轨道模型、超导配对对称性等都有理论探究。

本文引用格式

姚道新 . 新型镍氧超导体的理论研究[J]. 科技导报, 2024 , 42(20) : 6 -13 . DOI: 10.3981/j.issn.1000-7857.2024.03.01184

Abstract

The discovery of bilayer nickelate superconductor La3Ni2O7 under high pressure has attracted worldwide attention, in which theoretical research plays a vital role. So far, theoretical calculations show that the two eg Ni 3dx2-y2 and 3dz2 orbitals in La3Ni2O7 are crucial to the formation of superconductivity, while the O2 p orbital also appears on the Fermi surface. Multi-orbital models have been proposed based on the above analysis. Various calculations show that La3Ni2O7 has a s± wave pairing symmetry although other pairing symmetries can be obtained. Theoretical calculations shows that the superconducting mechanism is unconventional and closely related to antiferromagnetic fluctuation. The vacancy of apical oxygen has a significant impact on the occurrence of superconductivity. The discovery of trilayer nickelate superconductor La4Ni3O10 under pressure has further enriched the family of nickelate superconductors. And its electronic band structure, multi-orbital model, superconducting pairing symmetry and so on have been investigated and explored theoretically.

参考文献

[1] Sun H L, Huo M W, Hu X W, et al. Signatures of superconductivity near 80 K in a nickelate under high pressure [J]. Nature, 2023, 621(7979): 493-498.
[2] Zhang Y N, Su D J, Huang Y N, et al. High-temperature superconductivity with zero-resistance and strange metal behavior in La3Ni2O7-δ[J]. Nature Physics, 2024, 20: 1269-1273.
[3] Hou J, Yang P T, Liu Z Y, et al. Emergence of high-temperature superconducting phase in pressurized La3Ni2O7 crystals[J]. Chinese Physics Letters, 2023, 40(11): 117302.
[4] Wang G, Wang N N, Shen X L, et al. Pressure-induced superconductivity in polycrystalline La3Ni2O7-δ[J]. Physical Review X, 2024, 14: 011040.
[5] Luo Z H, Hu X W, Wang M, et al. Bilayer two-orbital model of La3Ni2O7 under pressure[J]. Physical Review Letters, 2023, 131(12): 126001.
[6] 高淼, 卢仲毅, 向涛. 通过金属化σ电子寻找高温超导体[J]. 物理, 2015, 44(7): 421-426.
[7] Yang J, Sun H, Hu X, et al. Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7[J]. Nature Communications, 2024, 15: 4373.
[8] Shen Y, Qin M P, Zhang G M. Effective Bi-layer model Hamiltonian and density-matrix renormalization group study for the high-Tc superconductivity in La3Ni2O7 under high pressure[J]. Chinese Physics Letters, 2023, 40(12): 127401.
[9] Lu C, Pan Z M, Yang F, et al. Interlayer-coupling-driven high-temperature superconductivity in La3Ni2O7 under pressure[J]. Physical Review Letters, 2024, 132(14): 146002.
[10] Qu X Z, Qu D W, Chen J L, et al. Bilayer t-J-j⊥ model and magnetically mediated pairing in the pressurized nickelate La3Ni2O7[J]. Physical Review Letters, 2024, 132(3): 036502.
[11] Cao Y Y, Yang Y F. Flat bands promoted by Hund's rule coupling in the candidate double-layer high-temperature superconductor La3Ni2O7 under high pressure [J]. Physical Review B, 2024, 109(8): L081105.
[12] Ouyang Z F, Wang J M, Wang J X, et al. Hund electronic correlation in La3Ni2O7 under high pressure[J]. Physical Review B, 2024, 109(11): 115114.
[13] Yang H, Oh H, Zhang Y H. Strong pairing from small Fermi surface beyond weak coupling: Application to La3Ni2O7[EB/OL]. (2023-11-28). http://arxiv.org/abs/2309.15095.
[14] Zhang Y, Lin L F, Moreo A, et al. Electronic structure, magnetic correlations, and superconducting pairing in the reduced Ruddlesden-Popper bilayer La3Ni2O6 under pressure: Different role of d3z2-r2 orbital compared with La3Ni2O7[J]. Physical Review B, 2024, 109(4): 045151.
[15] Lechermann F, Gondolf J, Bötzel S, et al. Electronic correlations and superconducting instability in La3Ni2O7 under high pressure[J]. Physical Review B, 2023, 108(20): L201121.
[16] Gu Y H, Le C C, Yang Z S, et al. Effective model and pairing tendency in bilayer Ni-based superconductor La3Ni2O7[EB/OL]. (2023-08-31). http://arxiv.org/abs/2306.07275.
[17] Christiansson V, Petocchi F, Werner P. Correlated electronic structure of La3Ni2O7 under pressure[J]. Physical Review Letters, 2023, 131(20): 206501.
[18] Shilenko D A, Leonov I V. Correlated electronic structure, orbital-selective behavior, and magnetic correlations in double-layer La3Ni2O7 under pressure[J]. Physical Review B, 2023, 108(12): 125105.
[19] Liu Y Q, Liu Y B, Wang W S, et al. Electronic orders on the kagome lattice at the lower Van Hove filling[J]. Physical Review B, 2024, 109(7): 075127.
[20] Luo Z H, Lv B, Wang M, et al. High-Tc superconductivity inLa3Ni2O7 based on the bilayer two-orbital t-J model [J]. NPJ Quantum Materials, 2024, 9: 61.
[21] Liu Y B, Mei J W, Ye F, et al. S±-wave pairing and the destructive role of apical-oxygen deficiencies in La3Ni2O7 under pressure[J]. Physical Review Letters, 2023, 131(23): 236002.
[22] Qin Q, Yang Y F. High-Tc superconductivity by mobilizing local spin singlets and possible route to higher Tc in pressurized La3Ni2O7[J]. Physical Review B, 2023, 108(14): L140504.
[23] Sakakibara H, Kitamine N, Ochi M, et al. Possible high t c superconductivity in La3Ni2O7 under high pressure through manifestation of a nearly half-filled bilayer Hubbard model[J]. Physical Review Letters, 2024, 132(10): 106002.
[24] Tian Y H, Chen Y, Wang J M, et al. Correlation effects and concomitant two-orbital s±-wave superconductivity in La3Ni2O7 under high pressure[J]. Physical Review B, 2024, 109(16): 165154.
[25] Lu D C, Li M, Zeng Z Y, et al. Superconductivity from doping symmetric mass generation insulators: Application to La3Ni2O7 under pressure[EB/OL]. (2023-09-14). http://arxiv.org/abs/2308.11195.
[26] Huang J K, Wang Z D, Zhou T. Impurity and vortex states in the bilayer high-temperature superconductor La3Ni2O7[J]. Physical Review B, 2023, 108(17): 174501.
[27] Wú W, Luo Z H, Yao D X, et al. Charge transfer and Zhang-rice singlet bands in the nickelate superconductor La3Ni2O7 under pressure[J]. Science China Physics Mechanics and Astronomy, 2024, 67(11): 117402.
[28] Jiang K, Wang Z Q, Zhang F C. High-temperature superconductivity in La3Ni2O7[J]. Chinese Physics Letters, 2024, 41(1): 017402.
[29] Liu H Q, Xia C L, Zhou S J, et al. Role of crystal-fieldsplitting and longe-range-hoppings on superconducting pairing symmetry of La3Ni2O7[EB/OL]. (2023-11-13). http://arxiv.org/abs/2311.07316
[30] Fan Z, Zhang J F, Zhan B, et al. Superconductivity in nickelate and cuprate superconductors with strong bilayer coupling[J]. Physical Review B, 2024, 110(2): 024514.
[31] Wang Y X, Jiang K, Wang Z Q, et al. Electronic structure and superconductivity in bilayer La3Ni2O7[EB/OL]. (2024-01-24). http://arxiv.org/abs/2401.15097.
[32] Yang Y F, Zhang G M, Zhang F C. Interlayer valence bonds and two-component theory for high-Tc superconductivity of La3Ni2O7 under pressure[J]. Physical Review B, 2023, 108(20): L201108.
[33] Zhang F C, Rice T M. Effective Hamiltonian for the superconducting Cu oxides[J]. Physical Review B, 1988, 37(7): 3759-3761.
[34] Li J Y, Ma P Y, Zhang H Y, et al. Pressure-driven right-triangle shape superconductivity in bilayer nickelate La3Ni2O7[EB/OL]. (2024-04-24). http://arxiv.org/abs/2404.11369.
[35] Liu Z, Huo M W, Li J, et al. Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7[J]. Nature Communications, 2024, 15(1): 7570.
[36] Chen K W, Liu X Q, Jiao J C, et al. Evidence of spin density waves in La3Ni2O7-δ[EB/OL]. (2024-05-13). http: //arxiv.org/abs/2311.15717.
[37] Liu Z J, Sun H L, Huo M W, et al. Evidence for charge and spin density waves in single crystals of La3Ni2O7 and La3Ni2O6[J]. Science China Physics, Mechanics & Astronomy, 2022, 66(1): 217411.
[38] Chen X Y, Choi J, Jiang Z C, et al. Electronic and magnetic excitations in La3Ni2O7[EB/OL]. (2024-01-23). http://arxiv.org/abs/2401.12657.
[39] Freeman P G, Boothroyd A T, Prabhakaran D, et al. Spin dynamics of half-doped La3/2Sr1/2NiO4[J]. Physical Review B, 2005, 71(17):174412.
[40] Yao D X, Carlson E. Spin-wave dispersion in halfdoped La3/2Sr1/2NiO4[J]. Physical Review B, 2006, 75(1): 012414.
[41] Zhang Y, Lin L F, Moreo A, et al. Trends in electronic structures and s±-wave pairing for the rare-earth series in bilayer nickelate superconductor R3Ni2O7[J]. Physical Review B, 2023, 108(16): 165141.
[42] Geisler B, Hamlin J J, Stewart G R, et al. Structural transitions, octahedral rotations, and electronic properties of A3Ni2O7 rare-earth nickelates under high pressure [J]. npj Quantum Materials, 2024, 9(1): 38.
[43] Wu S Q, Yang Z H, Ma X, et al. Ac3Ni2O7 and La2AeNi 2O6F(Ae = Sr, Ba): Benchmark materials for bilayer nickelate superconductivity[EB/OL]. (2024-03-18). http://arxiv.org/abs/2403.11713.
[44] Li Q, Zhang Y J, Xiang Z N, et al. Signature of superconductivity in pressurized La4Ni3O10[J]. Chinese Physics Letters, 2024, 41(1): 017401.
[45] Zhu Y H, Zhang E K, Pan B Y, et al. Superconductivity in trilayer nickelate La4Ni3O10 single crystals[J]. Nature, 2024, 631(8021): 531-536.
[46] Zhang M X, Pei C Y, Du X, et al. Superconductivity in trilayer nickelate La4Ni3O10 under pressure[EB/OL]. (2024-03-12). https://arxiv.org/abs/2311.07423.
[47] Sakakibara H, Ochi M, Nagata H, et al. Theoretical analysis on the possibility of superconductivity in the trilayer Ruddlesden-Popper nickelate La4Ni3O10 under pressure and its experimental examination: Comparison with La3Ni2O7[J]. Physical Review B, 2024, 109(14): 144511.
[48] Li J Y, Chen C Q, Huang C X, et al. Structural transition, electric transport, and electronic structures in the compressed trilayer nickelate La4Ni3O10[J]. Science China Physics, Mechanics & Astronomy, 2024, 67(11): 117403.
[49] Chen C Q, Luo Z H, Wang M, et al. Trilayer multi-orbital models of La4Ni3O10[J]. Physical Review B, 2024, 110: 014503.
[50] Wang J X, Ouyang Z F, He R Q, et al. Non-Fermi liquid and Hund correlation in La4Ni3O10 under high pressure[J]. Physical Review B, 2024, 109(16): 165140.
[51] Leonov I V. Electronic structure and magnetic correlations in the trilayer nickelate superconductor La4Ni3O10 under pressure[J]. Physical Review B, 2024, 109(23): 235123.
[52] LaBollita H, Kapeghian J, Norman M R, et al. Electronic structure and magnetic tendencies of trilayer La4Ni3O10 under pressure: Structural transition, molecular orbitals, and layer differentiation[J]. Physical Review B, 2024, 109(19): 195151.
[53] Yang Q G, Jiang K Y, Wang D, et al. Effective model and s ±-wave superconductivity in trilayer nickelate La4Ni3O10[J]. Physical Review B, 2024, 109(22): L220506.
[54] Zhang Y, Lin L F, Moreo A, et al. Prediction of s±-wave superconductivity enhanced by electronic doping in trilayer nickelates La4Ni3O10 under pressure[J]. Physical Review Letters, 2024, 133(13): 136001.
[55] Tian P F, Ma H T, Ming X, et al. Effective model and electron correlations in trilayer nickelate superconductor La4Ni3O10[J]. Journal of Physics: Condensed Matter, 2024, 36(35): 355602.
[56] Zhang M, Sun H Y, Liu Y B, et al. The s±-wave superconductivity in the pressurized La4Ni3O10[EB/OL]. (2024-03-07). http://arxiv.org/abs/2402.07902.
[57] Lu C, Pan Z M, Yang F, et al. Superconductivity in La4Ni3O10 under pressure[EB/OL]. (2024-02-14). http://arxiv.org/abs/2402.06450.
文章导航

/