[1] Roy M. Surface engineering for enhanced performance against wear[M]. Wien: Springer-Verlag, 2013: 1-43, 229-275.
[2] Shim D S, Baek G Y, Lee S B, et al. Influence of heat treatment on wear behavior and impact toughness of AISI M4 coated by laser melting deposition[J]. Surface and Coatings Technology, 2017, 328: 219-230.
[3] Li N, Huang S, Zhang G D, et al. Progress in additive manufacturing on new materials: A review[J]. Journal of Materials Science & Technology, 2019, 35(2): 242-269.
[4] Toyserkani E, Khajepour A, Corbin S. Laser cladding[M]. Boca Raton, Fla.: CRC Press, 2005.
[5] Liu W, Xiong H P, Li N, et al. Microstructure characteristics and mechanical properties of Nb-17Si-23Ti ternary alloys fabricated by in situ reaction laser melting deposition[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 362-370.
[6] Sun G F, Yao S, Wang Z D, et al. Microstructure and mechanical properties of HSLA-100 steel repaired by laser metal deposition[J]. Surface and Coatings Technology, 2018, 351: 198-211.
[7] Li N, Xiong Y, Xiong H P, et al. Microstructure, formation mechanism and property characterization of Ti + SiC laser cladded coatings on Ti6Al4V alloy[J]. Materials Characterization, 2019, 148: 43-51.
[8]《中国航空材料手册》编辑委员会. 中国航空材料手册(第二版)[M]. 北京: 中国标准出版社, 2001: 76-86.
[9] Barr C, Sun S D, Easton M, et al. Influence of macrosegregation on solidification cracking in laser clad ultrahigh strength steels[J]. Surface and Coatings Technology, 2018, 340: 126-136.
[10] Machmeier P, Matuszewski T, Jones R, et al. Effect of chromium additions on the mechanical and physical properties and microstructure of Fe-Co-Ni-Cr-Mo-C ultra-high strength steel: Part I[J]. Journal of Materials Engineering and Performance, 1997, 6(3): 279-288.
[11] Wang C C, Zhang C, Yang Z G, et al. Microstructure analysis and yield strength simulation in high Co – Ni secondary hardening steel[J]. Materials Science and Engineering: A, 2016, 669: 312-317.
[12] Liu J, Li J, Cheng X, et al. Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300 M steel substrate[J]. Surface and Coatings Technology, 2017, 325: 352-359.
[13] Li Y F, Cheng X, Liu D, et al. Influence of last stage heat treatment on microstructure and mechanical properties of laser additive manufactured AF1410 steel[J]. Materials Science and Engineering: A, 2018, 713: 75-80.
[14] Bendeich P, Alam N, Brandt M, et al. Residual stress measurements in laser clad repaired low pressure turbine blades for the power industry[J]. Materials Science and Engineering: A, 2006, 437(1): 70-74.
[15] Sun G F, Zhou R, Lu J Z, et al. Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel [J]. Acta Materialia, 2015, 84: 172-189.
[16] Sun G F, Wang K, Zhou R, et al. Effect of different heat-treatment temperatures on the laser cladded M3: 2 high-speed steel[J]. Materials & Design, 2015, 65: 606-616.
[17] Guo Y B, Feng K, Lu F G, et al. Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coatings[J]. Applied Surface Science, 2015, 357: 309-316.
[18] Yoo C H, Lee H M, Chan J W, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel[J]. Metallurgical and Materials Transactions A, 1996, 27(11): 3466-3472.
[19] Lee K B, Kwon H, Yang H R, et al. Effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior for martensitic steels containing both Mo and W[J]. Metallurgical and Materials Transactions A, 2001, 32(7): 1659-1670.
[20] Zhong P. Microstructure and mechanical properties in isothermal tempering of high Co-Ni secondary hardening ultrahigh strength steel[J]. Journal of Iron and Steel Research, International, 2007, 14(5): 292-295.
[21] Veerababu R, Balamuralikrishnan R, Muraleedharan K, et al. Three-dimensional atom probe investigation of microstructural evolution during tempering of an ultrahigh-strength high-toughness steel[J]. Metallurgical and Materials Transactions A, 2008, 39(7): 1486-1495.
[22] Qin R Y, Zhang X J, Guo S Q, et al. Laser cladding of high Co–Ni secondary hardening steel on 18Cr2Ni4WA steel[J]. Surface and Coatings Technology, 2016, 285: 242-248.
[23] Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410[J]. Metallurgical Transactions A, 1989, 20(1): 105-123.
[24] Lee H M, Allen S M. Coarsening resistance of M2C carbides in secondary hardening steels: Part III. Comparison of theory and experiment[J]. Metallurgical Transactions A, 1991, 22: 2877-2888.
[25] Kwon H, Lee J H, Lee K B, et al. Effect of alloying additions on secondary hardening behavior of Mo-containing steels[J]. Metallurgical and Materials Transactions A, 1997, 28(3): 621-627.
[26] Zhong P. Effect of tempering temperature on microstructure and mechanical properties in new-type ultrahigh strength steel[J]. Journal of Iron and Steel Research, International, 2007, 14(5): 288-291.
[27] Duan H P, Liu X, Ran X Z, et al. Effect of ordered domains on the fracture toughness of high Co-Ni secondary hardening steel[J]. Materials Science and Engineering: A, 2017, 704: 32-37.
[28] Veerababu R, Balamuralikrishnan R, Muraleedharan K, et al. Three-dimensional atom probe investigation of microstructural evolution during tempering of an ultrahigh-strength high-toughness steel[J]. Metallurgical and Materials Transactions A, 2008, 39(7): 1486-1495.
[29] Gorynin I V, Rybin V V, Malyshevskii V A, et al. Transformations of dislocation martensite in tempering secondary-hardening steel[J]. Metal Science and Heat Treatment, 1999, 41(9): 377-383.
[30] Zhu Y Z, Yin Z M, Zeng Y, et al. Effects of heat treatment on microstructure and mechanical properties of FeCo-Ni-Cr-Mo-C alloy[J]. Journal of Central South University of Technology, 2004, 11(3): 229-234.
[31] Zhang Y P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel[J]. Materials Characterization, 2018, 144: 393-399.
[32] Cho K S, Park S S, Kim H K, et al. Precipitation kinetics of M2C carbide in severely ausformed 13Co-8Ni secondary hardening steels[J]. Metallurgical and Materials Transactions A, 2015, 46(4): 1535-1543.
[33] Cho K S, Choi J H, Kang H S, et al. Influence of rolling temperature on the microstructure and mechanical properties of secondary hardening high Co-Ni steel bearing 0.28wt% C[J]. Materials Science and Engineering: A, 2010, 527(27/28): 7286-7293.
[34] Wang J S, Mulholland M D, Olson G B, et al. Prediction of the yield strength of a secondary-hardening steel[J]. Acta Materialia, 2013, 61(13): 4939-4952.
[35] Shi X H, Zeng W D, Zhao Q Y, et al. Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482℃[J]. Journal of Alloys and Compounds, 2016, 679: 184-190.