论文

热处理对激光熔覆高Co-Ni钢涂层组织和性能的影响

  • 秦仁耀 ,
  • 张国会 ,
  • 陈冰清 ,
  • 李能 ,
  • 刘伟 ,
  • 黄帅 ,
  • 高超 ,
  • 郭绍庆
展开
  • 中国航发北京航空材料研究院焊接与塑性成形研究所, 北京 100095
秦仁耀,高级工程师,研究方向为航空关键件增材修复及电子束增材制造技术,电子信箱:529392330@qq.com;张国会(通信作者),工程师,研究方向为航空关键件增材修复,电子信箱:guohui-zhang@foxmail.com

收稿日期: 2023-02-16

  修回日期: 2023-03-27

  网络出版日期: 2024-07-11

基金资助

国家自然科学基金项目(51701198,51775525)

Effect of heat treatment on microstructure and mechanical properties of laser cladded high Co-Ni steel coating

  • QIN Renyao ,
  • ZHANG Guohui ,
  • CHEN Bingqing ,
  • LI Neng ,
  • LIU Wei ,
  • HUANG Shuai ,
  • GAO Chao ,
  • GUO Shaoqing
Expand
  • 3D Printing Research and Engineering Technology Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 2023-02-16

  Revised date: 2023-03-27

  Online published: 2024-07-11

摘要

研究了热处理对激光熔覆高Co-Ni钢涂层组织和显微硬度的影响。通过使用光学显微镜、扫描电子显微镜和能谱,分析了涂层的微观组织,采用维氏硬度仪测试了涂层的显微硬度。结果表明,当热处理温度从200℃提高至600℃时,晶界残余奥氏体因发生分解反应而显著减少,针状M3C渗碳体和棒状M2C碳化物的数量则明显增加;经550℃和600℃热处理后,M2C碳化物均发生明显粗化。当热处理温度为200~400℃时,析出的细小M2C碳化物与基体有着良好的共格关系,故涂层的显微硬度值随着M2C碳化物增加而增加,当温度继续升至600℃时,M2C碳化物粗化,与基体失去共格关系,且基体中位错恢复,导致涂层的显微硬度急剧下降。

本文引用格式

秦仁耀 , 张国会 , 陈冰清 , 李能 , 刘伟 , 黄帅 , 高超 , 郭绍庆 . 热处理对激光熔覆高Co-Ni钢涂层组织和性能的影响[J]. 科技导报, 2024 , 42(22) : 93 -101 . DOI: 10.3981/j.issn.1000-7857.2023.02.00238

Abstract

The effect of post-heat treatment on the microstructure and microhardness of laser cladded high Co-Ni secondary hardening steel coating was investigated. The microstructure of the coating was analyzed using a scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS), and the microhardness was measured with a Vickers indenter. Decomposition of the retained austenite in the coating occurred during the post-heat treatment. As the temperature increased from 200 ℃ to 600 ℃, the quantity of the retained austenite at the boundaries decreased significantly, while that of the needleshaped M3C cementite and M2C carbides increased. The M2C carbides evidently coarsened when the temperature was 550 ℃ and 600 ℃. The microhardness of high Co-Ni steel coating increased as the temperature of heat treatment increased from 200 ℃ to 400 ℃ because the fine-scale M2C carbides were coherent with the matrix and increased distinctly in this temperature range. While the microhardness decreased sharply when the temperature was improved from 500 ℃ to 600 ℃ due to both the incoherency of the coarsened M2C carbides and the recovery of dislocations in the carbon-supersaturated matrix.

参考文献

[1] Roy M. Surface engineering for enhanced performance against wear[M]. Wien: Springer-Verlag, 2013: 1-43, 229-275.
[2] Shim D S, Baek G Y, Lee S B, et al. Influence of heat treatment on wear behavior and impact toughness of AISI M4 coated by laser melting deposition[J]. Surface and Coatings Technology, 2017, 328: 219-230.
[3] Li N, Huang S, Zhang G D, et al. Progress in additive manufacturing on new materials: A review[J]. Journal of Materials Science & Technology, 2019, 35(2): 242-269.
[4] Toyserkani E, Khajepour A, Corbin S. Laser cladding[M]. Boca Raton, Fla.: CRC Press, 2005.
[5] Liu W, Xiong H P, Li N, et al. Microstructure characteristics and mechanical properties of Nb-17Si-23Ti ternary alloys fabricated by in situ reaction laser melting deposition[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 362-370.
[6] Sun G F, Yao S, Wang Z D, et al. Microstructure and mechanical properties of HSLA-100 steel repaired by laser metal deposition[J]. Surface and Coatings Technology, 2018, 351: 198-211.
[7] Li N, Xiong Y, Xiong H P, et al. Microstructure, formation mechanism and property characterization of Ti + SiC laser cladded coatings on Ti6Al4V alloy[J]. Materials Characterization, 2019, 148: 43-51.
[8]《中国航空材料手册》编辑委员会. 中国航空材料手册(第二版)[M]. 北京: 中国标准出版社, 2001: 76-86.
[9] Barr C, Sun S D, Easton M, et al. Influence of macrosegregation on solidification cracking in laser clad ultrahigh strength steels[J]. Surface and Coatings Technology, 2018, 340: 126-136.
[10] Machmeier P, Matuszewski T, Jones R, et al. Effect of chromium additions on the mechanical and physical properties and microstructure of Fe-Co-Ni-Cr-Mo-C ultra-high strength steel: Part I[J]. Journal of Materials Engineering and Performance, 1997, 6(3): 279-288.
[11] Wang C C, Zhang C, Yang Z G, et al. Microstructure analysis and yield strength simulation in high Co – Ni secondary hardening steel[J]. Materials Science and Engineering: A, 2016, 669: 312-317.
[12] Liu J, Li J, Cheng X, et al. Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300 M steel substrate[J]. Surface and Coatings Technology, 2017, 325: 352-359.
[13] Li Y F, Cheng X, Liu D, et al. Influence of last stage heat treatment on microstructure and mechanical properties of laser additive manufactured AF1410 steel[J]. Materials Science and Engineering: A, 2018, 713: 75-80.
[14] Bendeich P, Alam N, Brandt M, et al. Residual stress measurements in laser clad repaired low pressure turbine blades for the power industry[J]. Materials Science and Engineering: A, 2006, 437(1): 70-74.
[15] Sun G F, Zhou R, Lu J Z, et al. Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel [J]. Acta Materialia, 2015, 84: 172-189.
[16] Sun G F, Wang K, Zhou R, et al. Effect of different heat-treatment temperatures on the laser cladded M3: 2 high-speed steel[J]. Materials & Design, 2015, 65: 606-616.
[17] Guo Y B, Feng K, Lu F G, et al. Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coatings[J]. Applied Surface Science, 2015, 357: 309-316.
[18] Yoo C H, Lee H M, Chan J W, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel[J]. Metallurgical and Materials Transactions A, 1996, 27(11): 3466-3472.
[19] Lee K B, Kwon H, Yang H R, et al. Effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior for martensitic steels containing both Mo and W[J]. Metallurgical and Materials Transactions A, 2001, 32(7): 1659-1670.
[20] Zhong P. Microstructure and mechanical properties in isothermal tempering of high Co-Ni secondary hardening ultrahigh strength steel[J]. Journal of Iron and Steel Research, International, 2007, 14(5): 292-295.
[21] Veerababu R, Balamuralikrishnan R, Muraleedharan K, et al. Three-dimensional atom probe investigation of microstructural evolution during tempering of an ultrahigh-strength high-toughness steel[J]. Metallurgical and Materials Transactions A, 2008, 39(7): 1486-1495.
[22] Qin R Y, Zhang X J, Guo S Q, et al. Laser cladding of high Co–Ni secondary hardening steel on 18Cr2Ni4WA steel[J]. Surface and Coatings Technology, 2016, 285: 242-248.
[23] Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410[J]. Metallurgical Transactions A, 1989, 20(1): 105-123.
[24] Lee H M, Allen S M. Coarsening resistance of M2C carbides in secondary hardening steels: Part III. Comparison of theory and experiment[J]. Metallurgical Transactions A, 1991, 22: 2877-2888.
[25] Kwon H, Lee J H, Lee K B, et al. Effect of alloying additions on secondary hardening behavior of Mo-containing steels[J]. Metallurgical and Materials Transactions A, 1997, 28(3): 621-627.
[26] Zhong P. Effect of tempering temperature on microstructure and mechanical properties in new-type ultrahigh strength steel[J]. Journal of Iron and Steel Research, International, 2007, 14(5): 288-291.
[27] Duan H P, Liu X, Ran X Z, et al. Effect of ordered domains on the fracture toughness of high Co-Ni secondary hardening steel[J]. Materials Science and Engineering: A, 2017, 704: 32-37.
[28] Veerababu R, Balamuralikrishnan R, Muraleedharan K, et al. Three-dimensional atom probe investigation of microstructural evolution during tempering of an ultrahigh-strength high-toughness steel[J]. Metallurgical and Materials Transactions A, 2008, 39(7): 1486-1495.
[29] Gorynin I V, Rybin V V, Malyshevskii V A, et al. Transformations of dislocation martensite in tempering secondary-hardening steel[J]. Metal Science and Heat Treatment, 1999, 41(9): 377-383.
[30] Zhu Y Z, Yin Z M, Zeng Y, et al. Effects of heat treatment on microstructure and mechanical properties of FeCo-Ni-Cr-Mo-C alloy[J]. Journal of Central South University of Technology, 2004, 11(3): 229-234.
[31] Zhang Y P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel[J]. Materials Characterization, 2018, 144: 393-399.
[32] Cho K S, Park S S, Kim H K, et al. Precipitation kinetics of M2C carbide in severely ausformed 13Co-8Ni secondary hardening steels[J]. Metallurgical and Materials Transactions A, 2015, 46(4): 1535-1543.
[33] Cho K S, Choi J H, Kang H S, et al. Influence of rolling temperature on the microstructure and mechanical properties of secondary hardening high Co-Ni steel bearing 0.28wt% C[J]. Materials Science and Engineering: A, 2010, 527(27/28): 7286-7293.
[34] Wang J S, Mulholland M D, Olson G B, et al. Prediction of the yield strength of a secondary-hardening steel[J]. Acta Materialia, 2013, 61(13): 4939-4952.
[35] Shi X H, Zeng W D, Zhao Q Y, et al. Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482℃[J]. Journal of Alloys and Compounds, 2016, 679: 184-190.
文章导航

/