随着航空发动机涡轮工作温度不断升高,涡轮叶片内腔结构日趋复杂,空心内腔气冷薄壁结构要求涡轮叶片的壁非常薄。针对薄壁试样性能与标准试样相比性能可能有所改变的情况,采用圆柱形标准试样和3种不同厚度的薄壁试样研究了900℃和1030℃条件下第二代定向凝固合金DZ406的持久性能。结果表明:DZ406合金具有明显的薄壁效应,且相同温度应力条件下,试样壁厚越小,持久寿命下降越严重;断口分析表明,合金的持久失效机理由“表面氧化产生的裂纹扩展”和“内部蠕变损伤”2种方式共同作用;持久性能的有效应力与试样表面氧化层厚度的关系表明,表面氧化层厚度对薄壁试样的持久性能具有显著影响。
As the working temperature of aero-engine turbine continues to rise, the inner cavity structure of turbine blades becomes more and more complex. Such hollow air-cooled thin-wall structure requires the very thin wall of turbine blades, while the performance of thin-wall sample may be different compared with standard sample. The stress rupture properties and the fracture character of the second generation directionally solidified alloy DZ406 at 900℃ and 1030℃were studied by using the round bar specimen and three thin-walled specimens with different thicknesses. Results show that the thin-wall effect was very obvious, and under the same test condition, the smaller the wall of the specimen, the more serious the decline of the life. The fracture analysis indicate that the fracture mechanism of DZ406 superalloy by the coalescence of the ‘surface oxidation-crack initiating-crack growth' and ‘inside creep damage'.The relationship between effective stress and oxidation thickness indicates that the surface oxidation had great influence on the durability of the thin-wall specimens.
[1] 张卫方,高威,赵爱国,等.定向凝固合金叶片的疲劳断裂分析[J].机械工程材料, 2003, 27(9):48-51.
[2] 宁礼奎,郑志,张达,等. DZ406合金及其渗铝涂层1100℃氧化性能研究[J].腐蚀科学与防护技术, 2011, 23(5):403-406.
[3] 张卫方,李运菊,高威,等.定向凝固DZ4合金的低周疲劳与断裂行为研究[J].稀有金属材料与工程, 2005, 34(2):217-220.
[4] 张仕朝,李莉,侯学勤.第二代定向柱晶高温合金低周疲劳行为研究[J].机械强度, 2017, 39(2):311-345.
[5] 刘峰,张重远,王景丽,等.表面再结晶对DZ406定向凝固镍基高温合金力学性能的影响[J].热加工工艺, 2019, 48(16):153-155.
[6] 谭政,刘峰,佟健,等.再结晶对定向凝固镍基高温合金DZ406高温拉伸性能的影响[J].金属热处理, 2019, 44(6):11-15.
[7] 刘世忠,李嘉荣,李骋,等.第二代单晶高温合金DD6的薄壁持久性能[J].钢铁研究学报, 2003, 15(7):276-278.
[8] Zhang B, Lu X, Liu D L, et al. Influence of recrystalliza-tion on high-temperature stress rupture and fracture be-havior of single crystal superalloy[J]. Materials Science and Engineering A, 2012, 551:149-153.
[9] 陈荣章.我国航空发动机用铸造高温合金发展[J].材料工程, 1989(4):2-6.
[10] Seetharaman V, Cetel A D. Thickness debit in creep properties of PWA 1484[C]//Super alloys 2004. Pennsyl-vanis:The Minerals, Metals&Materials Society (TMS), 2004:207-214.
[11] Doner M, Heckler J A. Identification of mechanisms re-sponsible for degradation for degradation in thin-wall stress-rupture properties[C]//Super alloys 1988. Pennsyl-vanis:The Minerals, Metals&Materials Society (TMS), 1988:653-662.
[12] 刘维维,李影,刘世忠,等.
[011] 取向DD6单晶高温合金薄壁持久性能[J].材料工程, 2011, 8:24-27.
[13] 张丽,于慧臣,郭广平,等.
[001] 取向DD6单晶合金的薄壁持久性能与断裂行为[J].航空动力学报, 2019, 34(3):627-634.
[14] 余昌奎,于金江,仉凤江,等. DD499单晶合金持久性能薄壁效应[J].铸造, 2014, 63(5):479-483.
[15] 张强,黄朝晖,仝建民.一种定向凝固高温合金的薄壁效应研究[J].特种铸造及有色金属, 2005, 25(5):260-261.
[16] Hu Y B, Zhang L, Cao T S, et al. The effect of thickness on the creep properties of a single-crystal nickel based superalloy[J]. Materials Science&Engineering:A, 2018, 728:124-132.
[17] Hu Y B, Cheng C Q, Zhang L, et al. Microstructural evo-lution of oxidation film on a single crystal nickel-based superalloy at 980℃[J]. Oxidation of Metals, 2018, 89:303-317.