论文

支撑我国“风光”大规模发展的关键金属稀缺性评估与循环策略模拟

  • 任凯鹏 ,
  • 唐旭
展开
  • 1. 中国石油大学(北京)理学院, 北京 102249;
    2. 中国石油大学(北京)经济管理学院, 北京 102249;
    3. 中国石油大学(北京)石油工程学院, 北京 102249;
    4. 中国石油大学(北京)理学院, 能源交叉学科基础研究中心, 北京 102249
任凯鹏,博士后,研究方向为能源系统建模、资源环境政策与管理、能源经济管理,电子信箱:kaipeng_ren@cup.edu.cn;唐旭(通信作者),教授,研究方向为能源经济管理、资源环境政策与管理、管理系统工程,电子信箱:tangxu@cup.edu.cn

收稿日期: 2024-04-09

  修回日期: 2024-06-27

  网络出版日期: 2024-09-29

基金资助

国家自然科学基金项目(72174206,72404277);中国石油大学(北京)科研基金项目(2462023YQTD002,2462023SZBH001);中国博士后科学基金面上项目(2023M743871);国家资助博士后研究人员计划项目(GZB20230865)

Identification of critical metals and simulation of circular strategies under China's large-scale development in wind-power and solar-power sectors

  • REN Kaipeng ,
  • TANG Xu
Expand
  • 1. College of Science, China University of Petroleum (Beijing), Beijing 102249, China;
    2. College of Economics and Management, China University of Petroleum (Beijing), Beijing 102249, China;
    3. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China;
    4. Basic Research center for Energy Interdisciplinary, College of Science, China University of Petroleum, Beijing 102249, China

Received date: 2024-04-09

  Revised date: 2024-06-27

  Online published: 2024-09-29

摘要

为评估支撑我国“风光”大规模发展的金属稀缺程度,构建了金属稀缺度评估模型,并对大规模“风光”发展所需的12种金属开展评估,运用金属末端循环回收模型对稀缺性强的关键金属开展金属循环回收模拟。结果显示:从金属稀缺角度看,支撑“风光”大规模发展所需的6种关键金属为铜、镍、镝、碲、锌、银,且碲、铜、镍的重要性更高;“风光”大规模发展路径的不确定性影响金属供需平衡和稀缺性,“风电主导”型路径较“光伏主导”型路径将引发更大的金属累积供应压力;金属循环再生策略将在中长期发挥作用,且对镝和银的效果更显著,金属回收率绝对值提高20%~30%,将使得金属矿产累积供应压力缓解5%~16%。研究表明,我国现有金属矿产供应能力难以支撑大规模“风光”发展的设施建设需求,金属循环回收策略对缓解金属稀缺具有一定的作用,但仅凭单一策略难以系统解决金属矿产供应制约问题。建议针对金属稀缺性与供应安全挑战构建应对策略组合时,应综合考虑金属矿产差异性、能源发展路径不确定性和金属供应规律演变3方面影响。

本文引用格式

任凯鹏 , 唐旭 . 支撑我国“风光”大规模发展的关键金属稀缺性评估与循环策略模拟[J]. 科技导报, 2024 , 42(17) : 111 -124 . DOI: 10.3981/j.issn.1000-7857.2024.03.01189

Abstract

Systematically assessing the scarcity of metals required by large-scale development in wind-power and solar power sectors and conducting recycling simulation are the basis of tackling the metal constraint challenge. We argue that 6 types of metal minerals (copper, nickel, dysprosium, tellurium, zinc, silver) have greater supply pressures during the wind-power and solar photovoltaics development while tellurium, copper and nickel have relatively higher criticality. The uncertainties of windpower and solar photovoltaics development have impacts on the supply pressure of metal minerals. "Wind-dominate" pathways generally have a greater metal mineral supply pressure than "solar photovoltaics dominate" pathways. The metal recycling and reuse strategies will play an important role in the mid to long-term future. The coping strategies have greater impacts on dysprosium and silver than other metals. The 20%~30% increasement of metal recycling rate will lead to 5%~16% decline of cumulative metal pressure. We also show that the current metal availability of China cannot fully meet the metal mineral demand during China's large-scale development in wind-power and solar-power, nor can the adptation of single strategies. We suggest that policy makers should consider the heterogeneity of different metal minerals, the uncertainty of energy development pathways, and the characteristics of metal supply when constructing the integrated coping strategies portfolio in the future.

参考文献

[1] 清华大学. 中国碳中和目标下的风光技术展望[EB/OL].[2024-01-31]. https://www.efchina.org/Reports-zh/reportsnp-20240131-zh.
[2] 国家能源局. 2023年全国电力工业统计数据[EB/OL].[2024-01-26]. https://www.nea.gov.cn/2024-01/26/c_131-0762246.htm.
[3] The World Bank. The growing role of minerals and metals for a low carbon future[R]. Washington DC:The World Bank Group, 2017.
[4] Hund K, La Porta D, Fabregas T P, et al. Minerals for climate action:The mineral intensity of the clean energy transition[M]. Washington DC:World Bank, 2023.
[5] IEA. World Energy Outlook 2023[R]. Paris:International Energy Agency, 2023.
[6] IEA. Energy Technology Perspective 2023[R]. Paris:International Energy Agency, 2023.
[7] Kleijn R, Van der Voet E, Kramer G J, et al. Metal requirements of low-carbon power generation[J]. Energy, 2011, 36(9):5640-5648.
[8] IEA. The role of critical minerals in clean energy transitions[R]. Paris:International Energy Agency, 2021.
[9] Graedel T E, Harper E M, Nassar N T, et al. Criticality of metals and metalloids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(14):4257-4262.
[10] Graedel T E, Barr R, Chandler C, et al. Methodology of metal criticality determination[J]. Environmental Science & Technology, 2012, 46(2):1063-1070.
[11] 汤林彬,陈伟强. 基于物质流视角的中国能源金属供应风险评估研究[J]. 煤炭经济研究,2024, 44(1):153-161.
[12] Li J S, Peng K, Wang P, et al. Critical rare-earth elements mismatch global wind-power ambitions[J]. One Earth, 2020, 3(1):116-125.
[13] Helbig C, Bradshaw A M, Kolotzek C, et al. Supply risks associated with CdTe and CIGS thin-film photovoltaics[J]. Applied Energy, 2016, 178:422-433.
[14] Zhou Y J, Li J W, Wang G S, et al. Assessing the shortto medium-term supply risks of clean energy minerals for China[J]. Journal of Cleaner Production, 2019, 215:217-225.
[15] 国务院. 推动大规模设备更新和消费品以旧换新行动方案[EB/OL].[2024-03-13]. https://www.gov.cn/zhengce/content/202403/content_6939232.htm.
[16] Geng Y, Sarkis J, Bleischwitz R. How to globalize the circular economy[J]. Nature, 2019, 565(7738):153-155.
[17] Geng Y, Sarkis J, Bleischwitz R. How to build a circular economy for rare-earth elements[J]. Nature, 2023, 619(7969):248-251.
[18] Fu X K, Ueland S M, Olivetti E. Econometric modeling of recycled copper supply[J]. Resources, Conservation and Recycling, 2017, 122:219-226.
[19] Dai T, Liu Y F, Wang P, et al. Unlocking dysprosium constraints for China's 1.5℃ climate target[J]. Environmental Science & Technology, 2023, 57(38):14113-14126.
[20] Nakamura S, Kondo Y, Kagawa S, et al. MaTrace:Tracing the fate of materials over time and across products in open-loop recycling[J]. Environmental Science & Technology, 2014, 48(13):7207-7214.
[21] Della B S, Sen B, Cimpan C, et al. Exploring the impact of recycling on demand-supply balance of critical materials in green transition:A dynamic multi-regional waste input-output analysis[J]. Environmental Science & Technology, 2023, 57(28):10221-10230.
[22] Liu B C, Wang H Y, Liang X Q, et al. Recycling to alleviate the gap between supply and demand of raw materials in China's photovoltaic industry[J]. Resources, Conservation and Recycling, 2024, 201:107324.
[23] Zhang S, Chen W Y. Assessing the energy transition in China towards carbon neutrality with a probabilistic framework[J]. Nature Communications, 2022, 13(1):87.
[24] Wang C, Feng K S, Liu X, et al. Looming challenge of photovoltaic waste under China's solar ambition:A spatial-temporal assessment[J]. Applied Energy, 2022, 307:118186.
[25] Chen W Q. Recycling rates of aluminum in the United States[J]. Journal of Industrial Ecology, 2013, 17(6):926-938.
[26] 任凯鹏. 考虑金属可得性的中国风光能源发展路径研究[D]. 北京:中国石油大学(北京), 2022.
[27] 中国煤控项目1.5度能源情景课题组. 中国实现全球1.5℃目标下的能源排放情景研究[R]. 北京:中国煤控项目1.5度能源情景课题组, 2018.
[28] 项目综合报告编写组, 何建坤, 解振华, 等.《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境, 2020, 30(11):1-25.
[29] 国家发改委能源研究所. 中国可再生能源展望2018[R]. 北京:国家发改委能源研究所,2019.
[30] 王金南. 攻克十大关键技术实现碳达峰碳中和[R]. 北京:生态环境部环境规划院, 2021.
[31] IEA. An energy sector roadmap to carbon neutrality in China[R]. Paris:International Energy Agency, 2021.
[32] 全球能源互联网发展合作组织. 中国2030年能源电力发展规划研究及2060年展望[R]. 北京:全球能源互联网发展合作组织, 2021.
[33] 唐旭, 任凯鹏, 李明, 等. 双碳目标下中国能源中长期走势评估[R]. 北京:中国石油大学(北京)碳中和与能源创新发展研究院, 2021.
[34] USGS. Mineral Commodity Summaries 2021[R]. Virginia:U.S. Geological Survey, 2021.
[35] 中华人民共和国自然资源部. 中国矿产资源报告-2020[R]. 北京:地质出版社, 2020.
[36] Gervais E, Shammugam S, Friedrich L, et al. Raw material needs for the large-scale deployments of photovoltaics-Effects of innovation-driven roadmaps on material constraints until 2050[J]. Renewable and Sustainable Energy Review, 2021, 137:110589.
[37] Goldschmidt J C, Wagner L, Pietzcker R, et al. Technological learning for resource efficient terawatt scale photovoltaics[J]. Energy and Environmental Science, 2021, 14:5147-5160.
[38] Carrara S, Alves D P, Plazzotta B, et al. Raw materials demand for wind and solar PV technologies in the transition towards a decarbonized energy system[R]. Luxembourg:Publication Office of the European Union, 2020.
[39] Nassar N T, Wilburn D R, Goonan T G. Byproduct metal requirements for U. S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios[J]. Applied Energy, 2016, 183:1209-1226.
[40] Shammugam S, Gervais E, Schlegl T, et al. Raw metal needs and supply risks for the development of wind energy in Germany until 2050[J]. Journal of Cleaner Production, 2019, 221:738-752.
[41] Nyffenegger R, Boukhatmi A, Radavicius T, et al. How circular is the European photovoltaic industry? Practical insights on current circular economy barriers, enablers, and goals[J]. Journal of Cleaner Production, 2024, 448:141376.
[42] Wang P, Yang Y Y, Heidrich O, et al. Regional rareearth element supply and demand balanced with circular economy strategies[J]. Nature Geoscience, 2024, 17(1):94-102.
[43] Takimoto H, Kosai S, Watari T, et al. Circular economy can mitigate rising mining demand from global vehicle electrification[J]. Resources, Conservation and Recycling, 2024, 209:107748.
[44] 倪思洁. 先进核能技术:向更安全、更可靠努力[EB/OL].[2024-04-02]. https://news.sciencenet.cn/htmlnews/2022/8/483828.shtm.
[45] Hill D J. Nuclear energy for the future[J]. Nature Materials, 2008, 7:680-682.
[46] Tokimatsu K, Höök, M, McLellan B C, et al. Energy modeling approach to the global energy-mineral nexus:Exploring metal requirements and the well-below 2° C target with 100 percent renewable energy[J]. Applied Energy, 2018, 225:1158-1175.
文章导航

/