专稿

膜法盐湖提锂技术研发进展

  • 邓子祺 ,
  • 程荣 ,
  • 石磊 ,
  • 郑祥
展开
  • 中国人民大学环境学院, 北京 100872
邓子祺,博士研究生,研究方向为膜分离材料与技术,电子信箱:542950760@qq.com;郑祥(通信作者),教授,研究方向为膜分离技术,电子信箱:zhengxiang@ruc.edu.cn

收稿日期: 2024-01-10

  修回日期: 2024-02-19

  网络出版日期: 2024-10-17

基金资助

国家自然科学基金项目(52070192)

Research progress on membrane based lithium extraction from salt lakes

  • DENG Ziqi ,
  • CHENG Rong ,
  • SHI Lei ,
  • ZHENG Xiang
Expand
  • School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China

Received date: 2024-01-10

  Revised date: 2024-02-19

  Online published: 2024-10-17

摘要

膜分离技术已成为中国主流盐湖提锂技术。以2023年发表在国际顶级期刊上的研究成果为基础,从膜改性、工艺参数优化和膜法组合工艺3个方面盘点了膜法盐湖提锂领域的研究进展。分析表明,膜改性研究主要围绕增强膜正电性以及渗透性展开,以克服trade-off效应为重要目标;工艺参数的优化有利于发挥高性能膜的分离潜力,亟待进一步深入研究;多级膜法耦合工艺能够实现超高纯度的Li+富集,是膜法盐湖提锂走向工业应用的重要途径。

本文引用格式

邓子祺 , 程荣 , 石磊 , 郑祥 . 膜法盐湖提锂技术研发进展[J]. 科技导报, 2024 , 42(18) : 5 -19 . DOI: 10.3981/j.issn.1000-7857.2024.01.00064

Abstract

Membrane separation technology, the mainstream of lithium extraction from salt lake brine in China, has a great strategic significance for the development of lithium resources and new energy in China. Based on the research results published in top international journals in 2023, this paper reviews the important studies of lithium extraction from salt lake brine by membrane method from the aspects of membrane modification, process parameter optimization, and multiple membrane processes, and provides a reference for the latest developments in the field. Membrane modification research mainly focuses on enhancing the electropositivity and permeability of the membrane, which aims to overcome the trade-off effect. The optimization of process parameters, which is conducive to the separation potential of high-performance membranes, requires further in-depth research. Being capable of realizing ultra-high purity Li+ enrichment, the multistage membrane coupling process is an important way for membrane lithium extraction from saline lakes towards industrial application.

参考文献

[1] Zhang Y, Sun W, Xu R, et al. Lithium extraction from water lithium resources through green electrochemical-battery approaches: A comprehensive review[J]. Journal of Cleaner Production, 2021, 285: 124905.
[2] Manthiram A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11(1): 1550.
[3] Vera M L, Torres W R, Galli C I, et al. Environmental impact of direct lithium extraction from brines[J]. Nature Reviews Earth & Environment, 2023, 4: 149-165.
[4] Zhu R, Wang S X, Srinivasakannan C, et al. Lithium extraction from salt lake brines with high magnesium/lithium ratio: A review[J]. Environmental Chemistry Letters, 2023, 21(3): 1611-1626.
[5] Nie X Y, Sun S Y, Sun Z, et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J]. Desalination, 2017, 403: 128-135.
[6] Razmjou A, Asadnia M, Hosseini E, et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J]. Nature Communications, 2019, 10(1): 5793.
[7] Zhao Y, Gu Y N, Liu B, et al. Pulsed hydraulic-pressureresponsive self-cleaning membrane[J]. Nature, 2022, 608(7921): 69-73.
[8] Xie H P, Zhao Z Y, Liu T, et al. A membrane-based seawater electrolyser for hydrogen generation[J]. Nature, 2022, 612(7941): 673-678.
[9] Huang T, Song J F, He S F, et al. Enabling sustainable green close-loop membrane lithium extraction by acid and solvent resistant poly (ether ether ketone) membrane [J]. Journal of Membrane Science, 2019, 589: 117273.
[10] Li W, Bai B Y, Song J F, et al. Positive role of sulfonated PEEK coating for PEEK membrane in mass transfer of lithium extraction[J]. Desalination, 2023, 552: 116451.
[11] Li L L, Zhu G R, Tong Y B, et al. Polyethyleneimine modified polyamide composite nanofiltration membrane for separation of lithium and magnesium[J]. Journal of Water Process Engineering, 2023, 54: 103894.
[12] Liu X F, Feng Y X, Ni Y X, et al. High-permeance Mg2+/Li+ separation nanofiltration membranes intensified by quadruple imidazolium salts[J]. Journal of Membrane Science, 2023, 667: 121178.
[13] Peng H W, Hu Y J, Li S P, et al. Sulfonium-polyamide membranes for high flux Mg2+/Li+ separation[J]. Journal of Membrane Science, 2023, 674: 121515.
[14] Zhang W H, Yin M J, Zhao Q, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport[J]. Nature Nanotechnology, 2021, 16(3): 337-343.
[15] Dalwani M, Zheng J M, Hempenius M, et al. Ultra-thin hybrid polyhedral silsesquioxane-polyamide films with potentially unlimited 2D dimensions[J]. Journal of Materials Chemistry, 2012, 22(30): 14835-14838.
[16] Zhang S Y, Jiang Y R, Yue X L, et al. Bifunctional polyhedral oligomeric silsesquioxane engineered polyamide membrane for efficient Mg2+/Li+ separation[J]. Separation and Purification Technology, 2023, 327: 124875.
[17] Shen K X, He Q Y, Ru Q, et al. Flexible LATP composite membrane for lithium extraction from seawater via an electrochemical route[J]. Journal of Membrane Science, 2023, 671: 121358.
[18] Zheng J F, Zhang X, Li G C, et al. Selective removal of heavy metals from saline water by nanofiltration[J]. Desalination, 2022, 525: 115380.
[19] Xu P, Guan K C, Chiao Y H, et al. Fine-tuning polyamide nanofiltration membrane for ultrahigh separation selectivity of Mg2+ and Li+[J]. Journal of Membrane Science, 2023, 688: 122133.
[20] Xu P, Wang W, Qian X M, et al. Positive charged PEITMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019, 449: 57-68.
[21] Guo C S, Li N, Qian X M, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: "Drag" effect from carboxyl-containing negative interlayer[J]. Separation and Purification Technology, 2020, 230: 115567.
[22] Li H W, Wang Y, Li T Y, et al. Nanofiltration membrane with crown ether as exclusive Li+ transport channels achieving efficient extraction of lithium from salt lake brine[J]. Chemical Engineering Journal, 2022, 438: 135658.
[23] Li T Y, Zhang X Z, Zhang Y, et al. Nanofiltration membrane comprising structural regulator Cyclen for efficient Li+/Mg2+ separation[J]. Desalination, 2023, 556: 116575.
[24] Robin P, Kavokine N, Bocquet L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits[J]. Science, 2021, 373(6555): 687- 691.
[25] Li J, Shi Y Y, Qi C Y, et al. Charging metal-organic framework membranes by incorporating crown ethers to capture cations for ion sieving[J]. Angewandte Chemie (International Ed in English), 2023, 62(40): e202309918.
[26] Ren L, Chen J X, Han J, et al. Biomimetic construction of smart nanochannels in covalent organic framework membranes for efficient ion separation[J]. Chemical Engineering Journal, 2024, 482: 148907.
[27] Foo Z H, Rehman D, Bouma A T, et al. Lithium concentration from salt-lake brine by donnan-enhanced nanofiltration[J]. Environmental Science & Technology, 2023, 57(15): 6320-6330.
[28] Foo Z H, Thomas J B, Heath S M, et al. Sustainable lithium recovery from hypersaline salt-lakes by selective electrodialysis: Transport and thermodynamics[J]. Environmental Science & Technology, 2023, 57(39): 14747- 14759.
[29] Alkhadra M A, Su X, Suss M E, et al. Electrochemical methods for water purification, ion separations, and energy conversion[J]. Chemical Reviews, 2022, 122(16): 13547-13635.
[30] Fan H Q, Yip N Y. Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes[J]. Journal of Membrane Science, 2019, 573: 668-681.
[31] Wang W G, Zhang Y Q, Li F R, et al. Mussel-inspired polyphenol/polyethyleneimine assembled membranes with highly positive charged surface for unprecedented high cation perm-selectivity[J]. Journal of Membrane Science, 2022, 658: 120703.
[32] Wang W G, Hong G H, Zhang Y Q, et al. Designing an energy-efficient multi-stage selective electrodialysis process based on high-performance materials for lithium extraction[J]. Journal of Membrane Science, 2023, 675: 121534.
[33] Wang R Y, Alghanayem R, Lin S H. Multipass nanofiltration for lithium separation with high selectivity and recovery[J]. Environmental Science & Technology, 2023, 57(38): 14464-14471.
[34] Zhang S X, Wei X, Cao X, et al. Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine[J]. Nature Communications, 2024, 15(1): 238.
文章导航

/