中国提出“双碳”目标,以减缓人类活动排放的CO2导致的气候变暖,推动电力系统向可再生能源转型,为绿色发展注入新动力。从近期研究的趋势出发,针对实现“双碳”目标对能源转型的需求,梳理了能源转型过程中潜在的环境问题,提出了可再生能源在生产和运行阶段对环境和生态的潜在影响。为认识实现“双碳”目标的挑战,基于2010—2021年期间清洁能源变化的历史趋势,预测2021—2060年发电量和能源消费量的变化趋势,并结合已有研究报道的中国光伏和风力发电潜力,分析了未来发展光电和风电对土地、输电、储能、投资等方面的需求。结果表明,维持中国过去清洁能源的增长速度可能无法满足实现“双碳”目标对未来清洁能源的需求,因此实现“双碳”目标需要克服能源系统和经济系统的惯性,加速推进中国的能源转型,提高清洁能源在总能源中的占比。最后,针对如何以较低经济成本加速能源转型的问题,提出了政策建议。
China has promised to achieve the "dual-carbon" goal in order to reduce climate warming caused by human-induced CO2 emissions, accelerate the transition of the electricity system toward renewable energy, and provide impetus to green development. Starting from summarizing the trend of recent studies, this paper encompasses the demand for energy transitions to meet the "dual-carbon" goal, analyzes the environmental problems in the processes of energy transition, and identifies the potential impacts of the production and operation of renewable energy on the environment and ecology. To cope with the challenge of achieving the "dual-carbon" goal, the trends of growth in power generation and energy consumption from 2021 to 2060 are predicted by analyzing the historical growth of renewable energy from 2010 to 2021. In addition, this paper analyzes the demand for land, power transmission, energy storage, and investment for the development of photovoltaic and wind power in China by taking into account the state-of-the-art estimate of photovoltaic and wind power generation. Based on the analysis, it is extrapolated that the renewable growth rate of clean energy in China is insufficient to satisfy the pledges aligning with the "dualcarbon" goal, therefore it is required to overcome the inertia in the energy and economic systems to strengthen the process of energy transition and increase the share of renewable energy in total energy supply. Lastly, a number of suggestions for policy are provided for accelerating the energy transitions to achieve the goal at a low economic cost.
[1] Global Monitoring Laboratory. Trends in atmospheric carbon dioxide[EB/OL]. (2023-11-05) [2023-11-25]. https://gml.noaa.gov/ccgg/trends/global.html.
[2] Lindsey R. How much will earth warm if carbon dioxide doubles pre-industrial levels[EB/OL]. (2014-01-24) [2023-11-25]. https://www.climate.gov/news-features/climate-qa/how-much-will-earth-warm-if-carbon-dioxidedoubles-pre-industrial-levels.
[3] Ali R, Kuriqi A, Kisi O. Human-environment natural disasters interconnection in China: A review[J]. Climate, 2020, 8(4): 48.
[4] 王晓东, 王旭, 郑键鹏, 等. 广东省全力应对台风“苏拉” “海葵”接连登陆[J]. 中国防汛抗旱, 2023, 33(10): 86-88.
[5] 习近平. 继往开来, 开启全球应对气候变化新征程[N]. 人民日报, 2020-12-13(2).
[6] Jiang W, Sun Y F. Which is the more important factor of carbon emission, coal consumption or industrial structure [J]. Energy Policy, 2023, 176: 113508.
[7] 张开来. 德国《可再生能源法》的新发展及对中国的启示[J]. 法学, 2023, 11(3): 1584-1593.
[8] 钱通. 法国立法推动气候治理[N]. 经济日报, 2022-03-28(4).
[9] Jiang B H, Raza M Y. Research on China's renewable energy policies under the dual carbon goals: A political discourse analysis[J]. Energy Strategy Reviews, 2023, 48: 101118.
[10] He J J, Yang Y, Liao Z J, et al. Linking SDG 7 to assess the renewable energy footprint of nations by 2030[J]. Applied Energy, 2022, 317: 119167.
[11] Bistline J E T, Blanford G J. Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector[J]. Nature Communications, 2021, 12: 3732.
[12] Chen X, Lin B Q. Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China[J]. Energy Policy, 2021, 157: 112510.
[13] 张梦楠, 曹楠楠, 朱雪莲. 典型国家“双碳”目标实现路径解析及中国借鉴[J]. 河北地质大学学报, 2024, 47(1): 119-126.
[14] 江深哲, 杜浩锋, 徐铭梽.“双碳”目标下能源与产业双重结构转型[J]. 数量经济技术经济研究, 2024, 41(2): 109-130.
[15] Qiu W Q, Zhou S, Yang Y, et al. Application prospect, development status and key technologies of shared energy storage toward renewable energy accommodation scenario in the context of China[J]. Energies, 2023, 16(2): 731.
[16] Yang N, Shi W X, Zhou Z H. Research on application and international policy of renewable energy in buildings [J]. Sustainability, 2023, 15(6): 5118.
[17] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
[18] 张万洪, 宋毅仁. 中国式现代化背景下能源正义与公正能源转型的新思考[J]. 江汉论坛, 2024(3): 36-43.
[19] 戴家权, 王利宁, 向征艰. 关于中国长期能源战略制定的几点思考[J]. 国际石油经济, 2019, 27(12): 10-14.
[20] 中华人民共和国统计局. 中国统计年鉴2023[M]. 北京: 中国统计出版社, 2023: 275-293.
[21] 国家发改委、能源局联合印发《能源生产和消费革命战略(2016—2030)》[J]. 电力与能源, 2017, 38(3): 288.
[22] 张晓娣. 正确认识把握我国碳达峰碳中和的系统谋划和总体部署: 新发展阶段党中央双碳相关精神及思路的阐释[J]. 上海经济研究, 2022, 34(2): 14-33.
[23] Garrett-Peltier H. Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model[J]. Economic Modelling, 2017, 61: 439-447.
[24] IRENA. Renewable energy and jobs annual review 2022[EB/OL]. (2022-12-01)[2023-11-25]. https://www.irena.org/Publications/2022/Sep/Renewable-Energy-and-Jobs-Annual-Review-2022.
[25] 中国可再生能源发展报告2022[R]. 北京: 水电水利规划设计总院, 2023.
[26] 陈骁, 郝博韬. 构筑双碳战略的金融基石——2022年 度绿色金融发展报告[R]. 北京: 平安证券, 2022.
[27] 马骏. 碳中和愿景下绿色金融路线图研究[R]. 北京: 中国金融学会绿色金融专业委员会课题组, 2021.
[28]“双碳”目标意义重大,“减碳”需要人人参与[EB/OL]. (2022-12-12)[2023-11-25]. http://www.tanjiaoyi.com/article-43269-1.html.
[29] 孙利利, 赵雪锋, 付宏祥. 光伏太阳能电池生产中的污染问题分析[J]. 节能, 2015, 34(11): 64-66.
[30] 肖佳, 梅琦, 黄晓琪, 等.“双碳”目标下我国光伏发电技术现状与发展趋势[J]. 天然气技术与经济, 2022, 16(5): 64-69.
[31] Turunen A W, Tiittanen P, Yli-Tuomi T, et al. Self-reported health in the vicinity of five wind power production areas in Finland[J]. Environment International, 2021, 151: 106419.
[32] 吴雨谦. 水利水电工程建设对生态环境的影响分析[J]. 科技风, 2018(3): 155.
[33] 杨建国, 黄孟超. 核电厂放射性废物处理技术的应用[J]. 科技创新与应用, 2016(20): 165.
[34] 阿尔杰恩·Y·胡克斯特拉. 水电和生物质燃料真的“清洁 ”吗? [EB/OL]. (2017-03-09) [2023-11-25]. https://chinadialogue.net/zh/4/43529/.
[35] He J K, Li Z, Zhang X L, et al. Towards carbon neutrality: A study on China's long-term low-carbon transition pathways and strategies[J]. Environmental Science and Ecotechnology, 2022, 9: 100134.
[36] Wang Y J, Wang R, Tanaka K, et al. Accelerating the energy transition towards photovoltaic and wind in China [J]. Nature, 2023, 619(7971): 761-767.