[1] IPCC. Climate change 2021: The physical science basis [J]. Cambridge: Cambridge University Press, 2021.
[2] Meehl G A, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century[J]. Science, 2004, 305(5686): 994-997.
[3] Perkins-Kirkpatrick S E, Lewis S C. Increasing trends in regional heatwaves[J]. Nature Communications, 2020, 11: 3357.
[4] Robinson A, Lehmann J, Barriopedro D, et al. Increasing heat and rainfall extremes now far outside the historical climate[J]. NPJ Climate and Atmospheric Science, 2021, 4: 45.
[5] Trisos C H, Merow C, Pigot A L. The projected timing of abrupt ecological disruption from climate change[J]. Nature, 2020, 580: 496-501.
[6] Rogelj J, den Elzen M, Höhne N, et al. Paris Agreement climate proposals need a boost to keep warming well below 2℃[J]. Nature, 2016, 534: 631-639.
[7] 于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊, 2022, 37(4): 423-434.
[8] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报,2020-09-23(1).
[9] 邓旭, 谢俊, 滕飞. 何谓“碳中和”?[J]. 气候变化研究进展, 2021, 17(1): 107-113.
[10] Qiao L, Zuo Z Y, Zhang R H, et al. Soil moisture-atmosphere coupling accelerates global warming[J]. Nature Communications, 2023, 14: 4908.
[11] Hua W J, Dai A G, Qin M H, et al. How unexpected was the 2022 summertime heat extremes in the middle reaches of the Yangtze River?[J]. Geophysical Research Letters, 2023, 50(16): e2023GL104269.
[12] 杨晨辉, 王艳君, 苏布达, 等. SSP“双碳”路径下赣江流域径流变化趋势[J]. 气候变化研究进展, 2022, 18(2): 177-187.
[13] Ma X F, Huang G, Cao J J. The significant roles of anthropogenic aerosols on surface temperature under carbon neutrality[J]. Science Bulletin, 2022, 67(5): 470-473.
[14] 徐北瑶, 王体健, 李树, 等.“双碳”目标对我国未来空气污染和气候变化的影响评估[J]. 科学通报, 2022, 67(8): 784-794.
[15] Giorgi F, Bi X Q. Time of emergence (ToE) of GHGforced precipitation change hot-spots[J]. Geophysical Research Letters, 2009, 36(6): L06709.
[16] Mahlstein I, Knutti R, Solomon S, et al. Early onset of significant local warming in low latitude countries[J]. Environmental Research Letters, 2011, 6(3): 034009.
[17] Hawkins E, Sutton R. Time of emergence of climate signals[J]. Geophysical Research Letters, 2012, 39(1): L01702.
[18] Deng X, Perkins-Kirkpatrick S E, Alexander L V, et al. Projected changes and time of emergence of temperature extremes over Australia in CMIP5 and CMIP6[J]. Earth's Future, 2022, 10(9): e2021EF002645.
[19] 张华, 王菲, 赵树云, 等. IPCC AR6报告解读: 地球能量收支、气候反馈和气候敏感度[J]. 气候变化研究进展, 2021, 17(6): 691-698.
[20] 周天军, 陈晓龙, 左萌, 等. 地球气候敏感度研究的现状和未来[J]. 第四纪研究, 2023, 43(2): 604-624.
[21] 周天军, 陈梓明, 陈晓龙, 等. IPCC AR6报告解读: 未来的全球气候: 基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17(6): 652-663.
[22] 邓荔, 朱欢欢, 江志红. 不同情景达到碳中和下中国区域气候变化的预估[J]. 大气科学学报, 2022, 45(3): 364-375.
[23] Rohde R A, Hausfather Z. The Berkeley earth land/ocean temperature record[J]. Earth System Science Data, 2020, 12(4): 3469-3479.
[24] Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937-1958.
[25] Suarez-Gutierrez L, Milinski S, Maher N. Exploiting large ensembles for a better yet simpler climate model evaluation[J]. Climate Dynamics, 2021, 57(9): 2557-2580.
[26] Frame D, Joshi M, Hawkins E, et al. Population-based emergence of unfamiliarclimates[J]. Nature Climate Change, 2017, 7: 407-411.
[27] Hawkins E, Frame D, Harrington L, et al. Observed emergence of the climate change signal: From the familiar to the unknown[J]. Geophysical Research Letters, 2020, 47(6): 86259.
[28] King A D, Donat M G, Fischer E M, et al. The timing of anthropogenic emergence in simulated climate extremes [J]. Environmental Research Letters, 2015, 10(9): 094015.
[29] Zhang K W, Zuo Z Y, Zhang R H, et al. Constrained emergence of air temperature change signal in northerncentral India from background variations[J]. Geophysical Research Letters, 2022, 49(10): e2022GL097736.
[30] Wang B, Bao Q, Hoskins B, et al. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophysical Research Letters, 2008, 35(14): L14702.
[31] 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3023-3035.
[32] Yao T D, Xue Y K, Chen D L, et al. Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
[33] 孟雅丽, 段克勤, 尚溦, 等. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24-33.
[34] 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226.
[35] 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164.
[36] Zhang Q, Yang J H, Wang W, et al. Climatic warming and humidification in the arid region of Northwest China: Multi-scale characteristics and impacts on ecological vegetation[J]. Journal of Meteorological Research, 2021, 35(1): 113-127.
[37] 丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 3(6): 551-562.
[38] 张强, 杨金虎, 王朋岭, 等. 西北地区气候暖湿化的研究进展与展望[J]. 科学通报, 2023, 68(14): 1814-1828.
[39] Hong C P, Zhang Q, Zhang Y, et al. Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality[J]. Nature Climate Change, 2020, 10: 845-850.
[40] Kotz M, Levermann A, Wenz L. The economic commitment of climate change[J]. Nature, 2024, 628: 551-557.
[41] Emissions gap report 2020[R]. Nairobi: United Nations Environment Programme, 2020.
[42] Bellouin N, Quaas J, Gryspeerdt E, et al. Bounding global aerosol radiative forcing of climate change[J]. Reviews of Geophysics, 2020, 58(1): e2019RG000660.