专题:气候变化与绿色能源低碳发展

“双碳”目标下气候变化风险的预估:从全球到区域

  • 程方圆 ,
  • 左志燕 ,
  • 乔梁 ,
  • 张楷文 ,
  • 常美玉
展开
  • 1. 复旦大学大气与海洋科学系, 大气科学研究院, 上海 200438;
    2. 上海市海洋-大气相互作用前沿科学研究基地, 上海 200438;
    3. 上海长江河口湿地生态系统国家野外科学观测研究站, 上海 202183
程方圆,硕士研究生,研究方向为区域气温变率和气候风险刻画,电子信箱:22213020003@m.fudan.edu.cn;左志燕(通信作者),教授,研究方向为陆-气相互作用、气候变化、亚洲季风、东亚气候变异机理、极端天气气候事件,电子信箱:zuozhy@fudan.edu.cn

收稿日期: 2024-01-03

  修回日期: 2024-05-26

  网络出版日期: 2024-11-02

基金资助

国家自然科学基金项目(42175053,41822503);国家重点研发计划项目(2022YFF0801703)

Projection of climate change risk under carbon peaking and carbon neutrality goals: From global level to regional level

  • CHENG Fangyuan ,
  • ZUO Zhiyan ,
  • QIAO Liang ,
  • ZHANG Kaiwen ,
  • CHANG Meiyu
Expand
  • 1. Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China;
    2. Shanghai Frontiers Science Center of Atmosphere-Ocean Interaction, Shanghai 200438, China;
    3. National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 202183, China

Received date: 2024-01-03

  Revised date: 2024-05-26

  Online published: 2024-11-02

摘要

借助国际耦合模式比较计划第6阶段(CMIP6)模式模拟结果,基于信噪比(SNR)方法系统评估了“双碳”目标下和更高排放情景下气候变化风险的差异。根据不同的SNR阈值,将气候变化风险量化为“不寻常”(SNR≥1)、“不熟悉”(SNR≥2)和“不可知”(SNR≥3)3种程度。从全球角度来说,在近期未来,各排放情景下CO2排放差异较小,因此“双碳”目标下将与更高排放情景几乎同时面临“不寻常”程度的气候变化风险;而在由CO2排放主导气温变化的中期和远期未来,“双碳”政策将使“不熟悉”或“不可知”程度的气候变化风险比更高排放情景晚数十年到来甚至不会到来,并且使暴露在“不熟悉”或“不可知”程度的气候变化风险下的地表面积比例相较更高排放情景降低30%~60%。区域上,“双碳”目标下,由于近期未来与更高排放情景下气溶胶(AA)排放区域差异显著,不同区域面临“不寻常”程度的气温变化风险的时间与更高排放情景差异较大。因此,结合区域发展特点制定更为合理的CO2和AA协同减排政策对于应对气候变化风险意义重大。

本文引用格式

程方圆 , 左志燕 , 乔梁 , 张楷文 , 常美玉 . “双碳”目标下气候变化风险的预估:从全球到区域[J]. 科技导报, 2024 , 42(19) : 20 -33 . DOI: 10.3981/j.issn.1000-7857.2024.02.00239

Abstract

To mitigate the negative impacts of global warming, international community has issued policies to accomplish carbon emission peak and carbon neutrality by 2030s and mid-21st century, respectively. Using projections from the Coupled Model Intercomparison Project Phase 6, this study compares differences of future climate change risks between under carbon peaking and carbon neutrality goals and under higher scenarios based on the signal-to-noise (SNR) method. By the level of climate change risks, the respective climate conditions can be sorted as "unusual" (SNR≥1), "unfamiliar" (SNR≥2) and "unknown" (SNR≥ 3). Under the low emission scenario, in the near-term future most regions of the earth will face "unusual" climate conditions, nearly simultaneously comparable with higher scenarios due to minor differences in CO2 emissions between different scenarios, except in some regions where reductions of aerosol emissions will dominate on the local surface air temperature (SAT) change. However, in the mid-term and long-term future, for the fast decrease in CO2 emission under carbon emission peaking and neutrality goals, almost all the globe will be exposed to an "unfamiliar" or "unusual" climate condition several decades later even beyond 2100 than under higher scenarios. In addition, mitigation will make the percentage of surface area exposed to higher climate change risks 30~60% lower than those under higher emission scenarios. Therefore, decision-makers should attach more importance to the climate penalty induced by decreased aerosols and take regional characteristics of climate change into consideration for developing more effective adaptation and mitigation strategies.

参考文献

[1] IPCC. Climate change 2021: The physical science basis [J]. Cambridge: Cambridge University Press, 2021.
[2] Meehl G A, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century[J]. Science, 2004, 305(5686): 994-997.
[3] Perkins-Kirkpatrick S E, Lewis S C. Increasing trends in regional heatwaves[J]. Nature Communications, 2020, 11: 3357.
[4] Robinson A, Lehmann J, Barriopedro D, et al. Increasing heat and rainfall extremes now far outside the historical climate[J]. NPJ Climate and Atmospheric Science, 2021, 4: 45.
[5] Trisos C H, Merow C, Pigot A L. The projected timing of abrupt ecological disruption from climate change[J]. Nature, 2020, 580: 496-501.
[6] Rogelj J, den Elzen M, Höhne N, et al. Paris Agreement climate proposals need a boost to keep warming well below 2℃[J]. Nature, 2016, 534: 631-639.
[7] 于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊, 2022, 37(4): 423-434.
[8] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报,2020-09-23(1).
[9] 邓旭, 谢俊, 滕飞. 何谓“碳中和”?[J]. 气候变化研究进展, 2021, 17(1): 107-113.
[10] Qiao L, Zuo Z Y, Zhang R H, et al. Soil moisture-atmosphere coupling accelerates global warming[J]. Nature Communications, 2023, 14: 4908.
[11] Hua W J, Dai A G, Qin M H, et al. How unexpected was the 2022 summertime heat extremes in the middle reaches of the Yangtze River?[J]. Geophysical Research Letters, 2023, 50(16): e2023GL104269.
[12] 杨晨辉, 王艳君, 苏布达, 等. SSP“双碳”路径下赣江流域径流变化趋势[J]. 气候变化研究进展, 2022, 18(2): 177-187.
[13] Ma X F, Huang G, Cao J J. The significant roles of anthropogenic aerosols on surface temperature under carbon neutrality[J]. Science Bulletin, 2022, 67(5): 470-473.
[14] 徐北瑶, 王体健, 李树, 等.“双碳”目标对我国未来空气污染和气候变化的影响评估[J]. 科学通报, 2022, 67(8): 784-794.
[15] Giorgi F, Bi X Q. Time of emergence (ToE) of GHGforced precipitation change hot-spots[J]. Geophysical Research Letters, 2009, 36(6): L06709.
[16] Mahlstein I, Knutti R, Solomon S, et al. Early onset of significant local warming in low latitude countries[J]. Environmental Research Letters, 2011, 6(3): 034009.
[17] Hawkins E, Sutton R. Time of emergence of climate signals[J]. Geophysical Research Letters, 2012, 39(1): L01702.
[18] Deng X, Perkins-Kirkpatrick S E, Alexander L V, et al. Projected changes and time of emergence of temperature extremes over Australia in CMIP5 and CMIP6[J]. Earth's Future, 2022, 10(9): e2021EF002645.
[19] 张华, 王菲, 赵树云, 等. IPCC AR6报告解读: 地球能量收支、气候反馈和气候敏感度[J]. 气候变化研究进展, 2021, 17(6): 691-698.
[20] 周天军, 陈晓龙, 左萌, 等. 地球气候敏感度研究的现状和未来[J]. 第四纪研究, 2023, 43(2): 604-624.
[21] 周天军, 陈梓明, 陈晓龙, 等. IPCC AR6报告解读: 未来的全球气候: 基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17(6): 652-663.
[22] 邓荔, 朱欢欢, 江志红. 不同情景达到碳中和下中国区域气候变化的预估[J]. 大气科学学报, 2022, 45(3): 364-375.
[23] Rohde R A, Hausfather Z. The Berkeley earth land/ocean temperature record[J]. Earth System Science Data, 2020, 12(4): 3469-3479.
[24] Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937-1958.
[25] Suarez-Gutierrez L, Milinski S, Maher N. Exploiting large ensembles for a better yet simpler climate model evaluation[J]. Climate Dynamics, 2021, 57(9): 2557-2580.
[26] Frame D, Joshi M, Hawkins E, et al. Population-based emergence of unfamiliarclimates[J]. Nature Climate Change, 2017, 7: 407-411.
[27] Hawkins E, Frame D, Harrington L, et al. Observed emergence of the climate change signal: From the familiar to the unknown[J]. Geophysical Research Letters, 2020, 47(6): 86259.
[28] King A D, Donat M G, Fischer E M, et al. The timing of anthropogenic emergence in simulated climate extremes [J]. Environmental Research Letters, 2015, 10(9): 094015.
[29] Zhang K W, Zuo Z Y, Zhang R H, et al. Constrained emergence of air temperature change signal in northerncentral India from background variations[J]. Geophysical Research Letters, 2022, 49(10): e2022GL097736.
[30] Wang B, Bao Q, Hoskins B, et al. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophysical Research Letters, 2008, 35(14): L14702.
[31] 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3023-3035.
[32] Yao T D, Xue Y K, Chen D L, et al. Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
[33] 孟雅丽, 段克勤, 尚溦, 等. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24-33.
[34] 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226.
[35] 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164.
[36] Zhang Q, Yang J H, Wang W, et al. Climatic warming and humidification in the arid region of Northwest China: Multi-scale characteristics and impacts on ecological vegetation[J]. Journal of Meteorological Research, 2021, 35(1): 113-127.
[37] 丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 3(6): 551-562.
[38] 张强, 杨金虎, 王朋岭, 等. 西北地区气候暖湿化的研究进展与展望[J]. 科学通报, 2023, 68(14): 1814-1828.
[39] Hong C P, Zhang Q, Zhang Y, et al. Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality[J]. Nature Climate Change, 2020, 10: 845-850.
[40] Kotz M, Levermann A, Wenz L. The economic commitment of climate change[J]. Nature, 2024, 628: 551-557.
[41] Emissions gap report 2020[R]. Nairobi: United Nations Environment Programme, 2020.
[42] Bellouin N, Quaas J, Gryspeerdt E, et al. Bounding global aerosol radiative forcing of climate change[J]. Reviews of Geophysics, 2020, 58(1): e2019RG000660.
文章导航

/