专题:气候变化与绿色能源低碳发展

全球碳中和背景下中国气候与极端气候变化

  • 蔡子怡 ,
  • 游庆龙 ,
  • 吴芳营 ,
  • 江志红 ,
  • 翟盘茂
展开
  • 1. 复旦大学大气与海洋科学系/大气科学研究院, 上海 200438;
    2. 极地海-冰-气系统与天气气候教育部重点实验室, 上海 200438;
    3. 南京信息工程大学气象灾害教育部重点实验室, 南京 210044;
    4. 中国气象科学研究院, 北京 100081
蔡子怡,博士研究生,研究方向为气候变化诊断,电子信箱:zycai19@fudan.edu.cn;游庆龙(通信作者),教授,研究方向为气候与极端气候变化,电子信箱:qlyou@fudan.edu.cn

收稿日期: 2023-12-15

  修回日期: 2024-05-31

  网络出版日期: 2024-11-02

基金资助

国家重点研发计划项目(2023YFE0123800);上海市基础研究特区计划项目(22TQ007)

China's climate and extreme climate changes under the global carbon neutrality scenario

  • CAI Ziyi ,
  • YOU Qinglong ,
  • WU Fangying ,
  • JIANG Zhihong ,
  • ZHAI Panmao
Expand
  • 1. Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China;
    2. Key Laboratory of Polar Atmosphere-ocean-ice System for Weather and Climate, Ministry of Education, Fudan University, Shanghai 200438, China;
    3. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science & Technology, Nanjing 210044, China;
    4. Chinese Academy of Meteorological Sciences, Beijing 100081, China

Received date: 2023-12-15

  Revised date: 2024-05-31

  Online published: 2024-11-02

摘要

利用第6次国际耦合模式比较计划(CMIP6)26个模式的3种共享社会经济路径(SSP)结果,选取了SSP1-2.6情景下全球大气CO2浓度达峰时间以确定全球碳中和时间,预估了未来全球碳中和时期相比于历史参考时期(1995—2014年)的中国气候与极端气候的响应变化,并与未实现碳中和的情景结果进行比较。结果表明,SSP1-2.6情景下全球达到碳中和时间为2062年左右(与中国的碳中和实现目标时间接近),相较于历史参考时期,SSP1-2.6碳中和时期中国区域平均升温(1.61±0.46)℃,降水增加(9.15±5.46)%,最大升温和增湿区域位于中国西北,增暖和增湿幅度分别达到(1.84±0.50)℃和(10.05±8.61)%;中国平均白天最高气温和夜间最低气温分别增加(1.78±0.76)℃和(1.83±0.69)℃,白天极端高温在青藏高原存在最大增幅(17.05±5.16)%,夜间极端低温在中国南方下降最为明显(-6.08±0.73)%;极端降水事件整体呈增加趋势,极端强降水在青藏高原最大增幅超过20%,最大连续干旱日数在中国北方减少而在南方增加。相比于未碳中和情景SSP2-4.5和SSP5-8.5,碳中和目标的实现可减缓未来中国的气候变化,极大防控中国大部分区域极端暖事件和极端湿事件的加剧,以及未来中国南方连续干旱日数的增加。因此,为缓解未来中国区域气候变化的加剧,需要合理控制CO2排放以实现“双碳”目标。

本文引用格式

蔡子怡 , 游庆龙 , 吴芳营 , 江志红 , 翟盘茂 . 全球碳中和背景下中国气候与极端气候变化[J]. 科技导报, 2024 , 42(19) : 73 -84 . DOI: 10.3981/j.issn.1000-7857.2024.02.00236

Abstract

This study utilizes the data from 26 CMIP6 models to explore the timeline for global carbon neutrality under the SSP1-2.6 scenario, focusing on the peak CO2 concentration time. It assesses changes in China's climate and extreme climate during the carbon neutrality period, using 1995—2014 as a reference. Meanwhile, these findings are contrasted with the outcomes from scenarios where carbon neutrality was not achieved. The results indicate that under the SSP1-2.6 scenario, global carbon neutrality will be achieved around 2062 (close to China's carbon neutrality target time). The regional average temperature in China during the SSP1-2.6 carbon neutrality period is expected to increase by (1.61±0.46)℃, with a precipitation increase of (9.15±5.46)%. The most significant change areas will be located in northwestern China, with temperature and precipitation increases reaching (1.84±0.50)℃ and (10.05±8.61)%, respectively. The average hottest days and coldest nights in China will increase by (1.78±0.76)℃ and (1.83±0.69)℃, respectively. Warm days will likely increase most significantly on the Tibetan Plateau (17.05±5.16)%, while cool nights decrease most in southern China (-6.08±0.73)%. Extreme precipitation events will intensify, with very wet days near the Tibetan Plateau increasing by more than 20%. Meanwhile, the consecutive dry days will decrease in northern China but increase in the southern regions. Compared to non-carbon neutrality scenarios like SSP2-4.5 and SSP5-8.5, the achievement of dual carbon goals can help mitigate future extreme climate change in China. It helps control extreme temperature and precipitation increases in northern China and the Tibetan Plateau, and reduce consecutive dry days in southern China. Therefore, to alleviate the exacerbation of regional climate change in China in the future, it is crucial to control CO2 emissions more rationally to achieve "dual carbon" goals.

参考文献

[1] IPCC. Summary for policymaker[R]//Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.
[2] Allen M R, Frame D J, Huntingford C, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne[J]. Nature, 2009, 458(7242): 1163-1166.
[3] Stocker B D, Roth R, Joos F, et al. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios[J]. Nature Climate Change, 2013, 3(7): 666-672.
[4] Zhu H H, Jiang Z H, Li L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6[J]. Science Bulletin, 2021, 66(24): 2528-2537.
[5] Aihaiti A, Jiang Z H, Zhu L H, et al. Risk changes of compound temperature and precipitation extremes in China under 1.5℃ and 2℃ global warming[J]. Atmospheric Research, 2021, 264: 105838.
[6] Shi C, Jiang Z H, Chen W L, et al. Changes in temperature extremes over China under 1.5℃ and 2℃ global warming targets[J]. Advances in Climate Change Research, 2018, 9(2): 120-129.
[7] Guo X J, Huang J B, Luo Y, et al. Projection of precipitation extremes for eight global warming targets by 17 CMIP5 models[J]. Natural Hazards, 2016, 84(3): 2299-2319.
[8] UNFCCC. Adoption of the Paris Agreement[R]. Geneva: United Nations Office at Geneva SU, 2015.
[9] Zickfeld K, Herrington T. The time lag between a carbon dioxide emission and maximum warming increases with the size of the emission[J]. Environmental Research Letters, 2015, 10(3): 031001.
[10] You Q L, Jiang Z H, Yue X, et al. Recent frontiers of climate changes in East Asia at global warming of 1.5℃ and 2℃ [J]. NPJ Climate and Atmospheric Science, 2022, 5: 80.
[11] Sun Y, Zhang X B, Zwiers F W, et al. Rapid increase in the risk of extreme summer heat in Eastern China[J]. Nature Climate Change, 2014, 4(12): 1082-1085.
[12] 胡婷, 孙颖, 张学斌. 全球1.5和2℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26): 3098-3111.
[13] You Q L, Cai Z Y, Wu F Y, et al. Temperature dataset of CMIP6 models over China: Evaluation, trend and uncertainty[J]. Climate Dynamics, 2021, 57(1): 17-35.
[14] Wu F Y, You Q L, Zhang Z Y, et al. Changes and uncertainties of surface mean temperature over China under global warming of 1.5 and 2℃ [J]. International Journal of Climatology, 2021, 41(Suppl 1): 410-427.
[15] Wang G, Zhang Q, Yu H Q, et al. Double increase in precipitation extremes across China in a 1.5℃/2.0℃ warmer climate[J]. Science of the Total Environment, 2020, 746: 140807.
[16] Li H X, Chen H P, Wang H J, et al. Future precipitation changes over China under 1.5℃ and 2.0℃ global warming targets by using CORDEX regional climate models[J]. Science of the Total Environment, 2018, 640/641: 543-554.
[17] Zhang G W, Zeng G, Yang X Y, et al. Future changes in extreme high temperature over China at 1.5℃-5℃ global warming based on CMIP6 simulations[J]. Advances in Atmospheric Sciences, 2021, 38(2): 253-267.
[18] Li W, Jiang Z H, Zhang X B, et al. Additional risk in extreme precipitation in China from 1.5℃ to 2.0℃ global warming levels[J]. Science Bulletin, 2018, 63(4): 228-234.
[19] Chen H P, Sun J Q. Increased population exposure to extreme droughts in China due to 0.5℃ of additional warming[J]. Environmental Research Letters, 2019, 14(6): 064011.
[20] 徐北瑶, 王体健, 李树, 等.“双碳”目标对我国未来空气污染和气候变化的影响评估[J]. 科学通报, 2022, 67(8): 784-794.
[21] Chen J W, Cui H J, Xu Y Y, et al. Long-term temperature and sea-level rise stabilization before and beyond 2100: Estimating the additional climate mitigation contribution from China's recent 2060 carbon neutrality pledge[J]. Environmental Research Letters, 2021, 16(7): 074032.
[22] 邓荔, 朱欢欢, 江志红. 不同情景达到碳中和下中国区域气候变化的预估[J]. 大气科学学报, 2022, 45(3): 364-375.
[23] Zhang J T, You Q L. Avoidable heat risk under scenarios of carbon neutrality by mid-century[J]. Science of the Total Environment, 2023, 892: 164679.
[24] 杨晨辉, 王艳君, 苏布达, 等. SSP“双碳”路径下赣江流域径流变化趋势[J]. 气候变化研究进展, 2022, 18(2): 177-187.
[25] Gidden M J, Riahi K, Smith S J, et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century[J]. Geoscientific Model Development, 2019, 12(4): 1443-1475.
[26] O'Neill B C, Tebaldi C, van Vuuren D P, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9): 3461-3482.
[27] 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况 与评 述[J]. 气候 变化 研究 进展 , 2019, 15(5): 519-525.
[28] Tebaldi C, Debeire K, Eyring V, et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6[J]. Earth System Dynamics, 2021, 12(1): 253-293.
[29] You Q L, Zhang Y Q, Xie X Y, et al. Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5℃ and 2℃ [J]. Climate Dynamics, 2019, 53(3): 2047-2060.
[30] You Q L, Chen D L, Wu F Y, et al. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210: 103349.
[31] Yao T D, Bolch T, Chen D L, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632.
[32] Yao T D, Thompson L, Chen D L, et al. Reflections and future strategies for Third Pole Environment[J]. Nature Reviews Earth & Environment, 2022, 3(10): 608-610.
[33] Ge J, Qiu B, Wu R Q, et al. Does dynamic downscaling modify the projected impacts of stabilized 1.5℃ and 2℃ warming on hot extremes over China? [J]. Geophysical Research Letters, 2021, 48(6): e2021GL092792.
[34] Huang J P, Yu H P, Dai A G, et al. Drylands face potential threat under 2℃ global warming target[J]. Nature Climate Change, 2017, 7: 417-422.
[35] Zhang M, Yu H P, King A D, et al. Greater probability of extreme precipitation under 1.5℃ and 2℃ warming limits over East-Central Asia[J]. Climatic Change, 2020, 162(2): 603-619.
[36] Guo L Y, Jiang Z H, Ding M, et al. Downscaling and projection of summer rainfall in Eastern China using a nonhomogeneous hidden Markov model[J]. International Journal of Climatology, 2019, 39(3): 1319-1330.
文章导航

/