综述

虚拟心脏研发进展

  • 裴雨洋 ,
  • 于天水
展开
  • 1. 中国政法大学证据科学教育部重点实验室, 北京 100088;
    2. 司法文明协同创新中心, 北京 100088;
    3. 中国政法大学重罪检察证据分析研究基地, 北京 100088
裴雨洋,硕士研究生,研究方向为心源性猝死的分子机制及新技术应用,电子信箱:1300438692@qq.com;于天水(通信作者),副教授、副主任法医师,研究方向为心源性猝死的分子机制、分子解剖及新技术应用,电子信箱:30030005@qq.com

收稿日期: 2023-08-30

  修回日期: 2024-11-06

  网络出版日期: 2024-12-05

基金资助

中国政法大学科研创新引导专项(20ZFY34001);中央高校基本科研业务费专项;国家自然科学基金面上项目(81971796)

Research progress of living heart and its application status

  • PEI Yuyang ,
  • YU Tianshui
Expand
  • 1. Key Laboratory of Evidence Science, Ministry of Education, China University of Political Science and Law, Beijing 100088, China;
    2. Collaborative Innovation Center of Judicial Civilization, Beijing 100088, China;
    3. Felony Procuratorial Evidence Research Center, China University of Political Science and Law, Beijing 100088, China

Received date: 2023-08-30

  Revised date: 2024-11-06

  Online published: 2024-12-05

摘要

虚拟心脏(living heart)是将虚拟现实(VR)技术与心脏研究相结合的全新领域,是利用计算机模拟心脏的生理或病理结构及功能,使之从形态、结构和功能等各方面逼真地再现活体心脏的真实活动。综述了虚拟心脏关键技术在心脏解剖结构的可视化、心脏电生理仿真模型、虚拟心脏器官级耦合模型等方面的研究进展,展望了虚拟心脏在心血管疾病发病机制、心血管疾病药物研制及医疗器械研发、医学教学及临床培训等方向的应用前景。

本文引用格式

裴雨洋 , 于天水 . 虚拟心脏研发进展[J]. 科技导报, 2024 , 42(24) : 88 -95 . DOI: 10.3981/j.issn.1000-7857.2023.08.01321

Abstract

Living heart, an emerging technology that integrates virtual reality (VR) with cardiac research, employs computational methods to simulate the physiological and pathological characteristics of heart, effectively replicating the real-time activities of a live-heart in terms of morphology, structure, and function. In this paper, the research progress of the key technologies of living heart in the visualization of cardiac anatomy, cardiac electrophysiological simulation model, and virtual heart organ-level coupling model is reviewed. The application prospect of living heart in cardiovascular disease pathogenesis, cardiovascular disease drug development, medical device research and development, medical teaching and clinical training is expected to provide new ideas for the realization of precision treatment of cardiovascular diseases.

参考文献

[1] 王宽全, 袁永峰. 虚拟心脏建模与可视化技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014: 12.
[2] 田亚琴, 窦建洪, 夏灵, 等. 虚拟心脏仿真研究进展及其在临床中的应用[J]. 北京生物医学工程, 2018, 37(5): 545-550.
[3] 葛均波, 徐永健, 王辰. 内科学[M]. 9版. 北京: 人民卫生出版社, 2018: 159-161.
[4] Gupta S K, Spicer D E, Anderson R H. A new low-cost method of virtual cardiac dissection of computed tomographic datasets[J]. Annals of Pediatric Cardiology, 2019, 12(2): 110-116.
[5] Lau I, Gupta A, Sun Z H. Clinical value of virtual reality versus 3D printing in congenital heart disease[J]. Biomolecules, 2021, 11(6): 884.
[6] Jone P N, Khoo N. Innovation in 3D echocardiographic imaging[J]. Current Treatment Options in Cardiovascular Medicine, 2018, 20(1): 1.
[7] 吴伟春, 兰天, 朱振辉, 等. 3D心脏解剖模型成像对不同心脏疾病心脏功能的评估价值[J]. 中国循环杂志, 2019, 34(1): 81-84.
[8] Hoashi T, Ichikawa H, Nakata T, et al. Utility of a superflexible three-dimensional printed heart model in congenital heart surgery[J]. Interactive Cardiovascular and Thoracic Surgery, 2018, 27(5): 749-755.
[9] Izawa Y, Nishii T, Mori S. Stereogram of the living heart, lung, and adjacent structures[J]. Tomography, 2022, 8(2): 824-841.
[10] Tretter J T, Gupta S K, Izawa Y, et al. Virtual dissection: Emerging as the gold standard of analyzing living heart anatomy[J]. Journal of Cardiovascular Development and Disease, 2020, 7(3): 30.
[11] Baillargeon B, Rebelo N, Fox D D, et al. The Living Heart Project: A robust and integrative simulator for human heart function[J]. European Journal of Mechanics - A/Solids, 2014, 48: 38-47.
[12] 郭潇雅. Living Heart: 走在医学虚拟技术最前沿[J]. 中国医院院长, 2016, 12(13): 38-39.
[13] Stevens C, Hunter P J. Sarcomere length changes in a 3D mathematical model of the pig ventricles[J]. Progress in Biophysics and Molecular Biology, 2003, 82(1/2/3): 229- 241.
[14] Zhang Q, Eagleson R, Peters T M. GPU-based visualization and synchronization of 4-D cardiac MR and ultrasound images[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(5): 878-890.
[15] Luo G N, Dong S Y, Wang W, et al. Commensal correlation network between segmentation and direct area estimation for bi-ventricle quantification[J]. Medical Image Analysis, 2020, 59: 101591.
[16] Sun Y B, Deng D D, Sun L P, et al. Comparison of segmentation algorithms for detecting myocardial infarction using late gadolinium enhancement magnetic resonance imaging [J]. Cardiovascular Innovations and Applications, 2020, 5(2): 89-95.
[17] 骆功宁, 王玮, 李钦策, 等. 虚拟生理心脏研究进展[J]. 中国科学基金, 2022, 36(2): 198-205.
[18] ten Tusscher K H W J, Noble D, Noble P J, et al. A model for human ventricular tissue[J]. American Journal of Physiology Heart and Circulatory Physiology, 2004, 286(4): H1573-H1589.
[19] 罗存金, 游婷婷, 刘彤, 等. 虚拟生理心脏模型及房颤机制研究进展[J]. 生物化学与生物物理进展, 2019, 46(10): 976- 992.
[20] Sadrieh A, Domanski L, Pitt-Francis J, et al. Multiscale cardiac modelling reveals the origins of notched T waves in long QT syndrome type 2[J]. Nature Communications, 2014, 5: 5069.
[21] Wang V Y, Nielsen P M F, Nash M P. Image-based predictive modeling of heart mechanics[J]. Annual Review of Biomedical Engineering, 2015, 17: 351-383.
[22] Arevalo H J, Vadakkumpadan F, Guallar E, et al. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models[J]. Nature Communications, 2016, 7: 11437.
[23] Deng D D, Arevalo H J, Prakosa A, et al. A feasibility study of arrhythmia risk prediction in patients with myocardial infarction and preserved ejection fraction[J]. Europace, 2016, 18(suppl 4): iv60-iv66.
[24] Deng D D, Prakosa A, Shade J L, et al. Characterizing conduction channels in postinfarction patients using a personalized virtual heart[J]. Biophysical Journal, 2019, 117(12): 2287-2294.
[25] Mendonca Costa C, Neic A, Gillette K, et al. Left ventricular endocardial pacing is less arrhythmogenic than conventional epicardial pacing when pacing in proximity to scar [J]. Heart Rhythm, 2020, 17(8): 1262-1270.
[26] 吴政洪. 基于患者个性化虚拟心脏建模方法初探及在室速和房颤中的应用[D]. 杭州: 浙江大学, 2022.
[27] Peirlinck M, Costabal F S, Yao J, et al. Precision medicine in human heart modeling: Perspectives, challenges, and opportunities[J]. Biomechanics and Modeling in Mechanobiology, 2021, 20(3): 803-831.
[28] Sahli C F, Matsuno K, Yao J, et al. Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 348: 313-333.
[29] Sahli C F, Yao J, Kuhl E. Predicting the cardiac toxicity of drugs using a novel multiscale exposure-response simulator[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21(3): 232-246.
[30] Okada J I, Yoshinaga T, Kurokawa J, et al. Arrhythmic hazard map for a 3D whole-ventricle model under multiple ion channel block[J]. British Journal of Pharmacology, 2018, 175(17): 3435-3452.
[31] Sahli-Costabal F, Seo K, Ashley E, et al. Classifying drugs by their arrhythmogenic risk using machine learning[J]. Biophysical Journal, 2020, 118(5): 1165-1176.
[32] Ramírez W A, Gizzi A, Sack K L, et al. In-silico study of the cardiac arrhythmogenic potential of biomaterial injection therapy[J]. Scientific Reports, 2020, 10(1): 12990.
[33] Li Y C, Wang K Q, Li Q C, et al. Reciprocal interaction between IK1 and if in biological pacemakers: A simulation study[J]. PLoS Computational Biology, 2021, 17(3): e1008177.
[34] Stone G W, Lindenfeld J, Abraham W T, et al. Transcatheter mitral-valve repair in patients with heart failure[J]. The New England Journal of Medicine, 2018, 379(24): 2307-2318.
[35] Hassan A, Eleid M F. Recurrent mitral regurgitation after MitraClip: Defining success and predicting outcomes[J]. Circulation Cardiovascular Interventions, 2022, 15(3): e011837.
[36] Zhang Y, Wang V Y, Morgan A E, et al. Mechanical effects of MitraClip on leaflet stress and myocardial strain in functional mitral regurgitation-A finite element modeling study [J]. PLoS One, 2019, 14(10): e0223472.
[37] Kong F W, Caballero A, McKay R, et al. Finite element analysis of MitraClip procedure on a patient-specific model with functional mitral regurgitation[J]. Journal of Biomechanics, 2020, 104: 109730.
[38] Aviles-Rivero A I, Alsaleh S M, Casals A. Sliding to predict: Vision-based beating heart motion estimation by modeling temporal interactions[J]. International Journal of Computer Assisted Radiology and Surgery, 2018, 13(3): 353-361.
[39] Lin G M, Li Y H, Chu K M, et al. Longitudinal mechanics of the periinfarct zone and ventricular tachycardia inducibility in patients with chronic ischemic cardiomyopathy [J]. Am Heart J, 2011, 161(4): e17.
[40] Li S, Cui J H, Hao A M, et al. Design and evaluation of personalized percutaneous coronary intervention surgery simulation system[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(11): 4150-4160.
[41] Hao A M, Cui J H, Li S, et al. Personalized cardiovascular intervention simulation system[J]. Virtual Reality & Intelligent Hardware, 2020, 2(2): 104-118.
[42] Li S, Xie Z J, Xia Q, et al. Hybrid 4D cardiovascular modeling based on patient-specific clinical images for realtime PCI surgery simulation[J]. Graphical Models, 2019, 101: 1-7.
[43] Park C, Fan Y L, Hager G, et al. An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging[J]. Science Robotics, 2020, 5(38): eaay9106.
[44] Park C, Singh M, Saeed M Y, et al. Biorobotic hybrid heart as a benchtop cardiac mitral valve simulator[J]. Device, 2024, 2(1): 100217.
文章导航

/