[1] 王宽全, 袁永峰. 虚拟心脏建模与可视化技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014: 12.
[2] 田亚琴, 窦建洪, 夏灵, 等. 虚拟心脏仿真研究进展及其在临床中的应用[J]. 北京生物医学工程, 2018, 37(5): 545-550.
[3] 葛均波, 徐永健, 王辰. 内科学[M]. 9版. 北京: 人民卫生出版社, 2018: 159-161.
[4] Gupta S K, Spicer D E, Anderson R H. A new low-cost method of virtual cardiac dissection of computed tomographic datasets[J]. Annals of Pediatric Cardiology, 2019, 12(2): 110-116.
[5] Lau I, Gupta A, Sun Z H. Clinical value of virtual reality versus 3D printing in congenital heart disease[J]. Biomolecules, 2021, 11(6): 884.
[6] Jone P N, Khoo N. Innovation in 3D echocardiographic imaging[J]. Current Treatment Options in Cardiovascular Medicine, 2018, 20(1): 1.
[7] 吴伟春, 兰天, 朱振辉, 等. 3D心脏解剖模型成像对不同心脏疾病心脏功能的评估价值[J]. 中国循环杂志, 2019, 34(1): 81-84.
[8] Hoashi T, Ichikawa H, Nakata T, et al. Utility of a superflexible three-dimensional printed heart model in congenital heart surgery[J]. Interactive Cardiovascular and Thoracic Surgery, 2018, 27(5): 749-755.
[9] Izawa Y, Nishii T, Mori S. Stereogram of the living heart, lung, and adjacent structures[J]. Tomography, 2022, 8(2): 824-841.
[10] Tretter J T, Gupta S K, Izawa Y, et al. Virtual dissection: Emerging as the gold standard of analyzing living heart anatomy[J]. Journal of Cardiovascular Development and Disease, 2020, 7(3): 30.
[11] Baillargeon B, Rebelo N, Fox D D, et al. The Living Heart Project: A robust and integrative simulator for human heart function[J]. European Journal of Mechanics - A/Solids, 2014, 48: 38-47.
[12] 郭潇雅. Living Heart: 走在医学虚拟技术最前沿[J]. 中国医院院长, 2016, 12(13): 38-39.
[13] Stevens C, Hunter P J. Sarcomere length changes in a 3D mathematical model of the pig ventricles[J]. Progress in Biophysics and Molecular Biology, 2003, 82(1/2/3): 229- 241.
[14] Zhang Q, Eagleson R, Peters T M. GPU-based visualization and synchronization of 4-D cardiac MR and ultrasound images[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(5): 878-890.
[15] Luo G N, Dong S Y, Wang W, et al. Commensal correlation network between segmentation and direct area estimation for bi-ventricle quantification[J]. Medical Image Analysis, 2020, 59: 101591.
[16] Sun Y B, Deng D D, Sun L P, et al. Comparison of segmentation algorithms for detecting myocardial infarction using late gadolinium enhancement magnetic resonance imaging [J]. Cardiovascular Innovations and Applications, 2020, 5(2): 89-95.
[17] 骆功宁, 王玮, 李钦策, 等. 虚拟生理心脏研究进展[J]. 中国科学基金, 2022, 36(2): 198-205.
[18] ten Tusscher K H W J, Noble D, Noble P J, et al. A model for human ventricular tissue[J]. American Journal of Physiology Heart and Circulatory Physiology, 2004, 286(4): H1573-H1589.
[19] 罗存金, 游婷婷, 刘彤, 等. 虚拟生理心脏模型及房颤机制研究进展[J]. 生物化学与生物物理进展, 2019, 46(10): 976- 992.
[20] Sadrieh A, Domanski L, Pitt-Francis J, et al. Multiscale cardiac modelling reveals the origins of notched T waves in long QT syndrome type 2[J]. Nature Communications, 2014, 5: 5069.
[21] Wang V Y, Nielsen P M F, Nash M P. Image-based predictive modeling of heart mechanics[J]. Annual Review of Biomedical Engineering, 2015, 17: 351-383.
[22] Arevalo H J, Vadakkumpadan F, Guallar E, et al. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models[J]. Nature Communications, 2016, 7: 11437.
[23] Deng D D, Arevalo H J, Prakosa A, et al. A feasibility study of arrhythmia risk prediction in patients with myocardial infarction and preserved ejection fraction[J]. Europace, 2016, 18(suppl 4): iv60-iv66.
[24] Deng D D, Prakosa A, Shade J L, et al. Characterizing conduction channels in postinfarction patients using a personalized virtual heart[J]. Biophysical Journal, 2019, 117(12): 2287-2294.
[25] Mendonca Costa C, Neic A, Gillette K, et al. Left ventricular endocardial pacing is less arrhythmogenic than conventional epicardial pacing when pacing in proximity to scar [J]. Heart Rhythm, 2020, 17(8): 1262-1270.
[26] 吴政洪. 基于患者个性化虚拟心脏建模方法初探及在室速和房颤中的应用[D]. 杭州: 浙江大学, 2022.
[27] Peirlinck M, Costabal F S, Yao J, et al. Precision medicine in human heart modeling: Perspectives, challenges, and opportunities[J]. Biomechanics and Modeling in Mechanobiology, 2021, 20(3): 803-831.
[28] Sahli C F, Matsuno K, Yao J, et al. Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 348: 313-333.
[29] Sahli C F, Yao J, Kuhl E. Predicting the cardiac toxicity of drugs using a novel multiscale exposure-response simulator[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21(3): 232-246.
[30] Okada J I, Yoshinaga T, Kurokawa J, et al. Arrhythmic hazard map for a 3D whole-ventricle model under multiple ion channel block[J]. British Journal of Pharmacology, 2018, 175(17): 3435-3452.
[31] Sahli-Costabal F, Seo K, Ashley E, et al. Classifying drugs by their arrhythmogenic risk using machine learning[J]. Biophysical Journal, 2020, 118(5): 1165-1176.
[32] Ramírez W A, Gizzi A, Sack K L, et al. In-silico study of the cardiac arrhythmogenic potential of biomaterial injection therapy[J]. Scientific Reports, 2020, 10(1): 12990.
[33] Li Y C, Wang K Q, Li Q C, et al. Reciprocal interaction between IK1 and if in biological pacemakers: A simulation study[J]. PLoS Computational Biology, 2021, 17(3): e1008177.
[34] Stone G W, Lindenfeld J, Abraham W T, et al. Transcatheter mitral-valve repair in patients with heart failure[J]. The New England Journal of Medicine, 2018, 379(24): 2307-2318.
[35] Hassan A, Eleid M F. Recurrent mitral regurgitation after MitraClip: Defining success and predicting outcomes[J]. Circulation Cardiovascular Interventions, 2022, 15(3): e011837.
[36] Zhang Y, Wang V Y, Morgan A E, et al. Mechanical effects of MitraClip on leaflet stress and myocardial strain in functional mitral regurgitation-A finite element modeling study [J]. PLoS One, 2019, 14(10): e0223472.
[37] Kong F W, Caballero A, McKay R, et al. Finite element analysis of MitraClip procedure on a patient-specific model with functional mitral regurgitation[J]. Journal of Biomechanics, 2020, 104: 109730.
[38] Aviles-Rivero A I, Alsaleh S M, Casals A. Sliding to predict: Vision-based beating heart motion estimation by modeling temporal interactions[J]. International Journal of Computer Assisted Radiology and Surgery, 2018, 13(3): 353-361.
[39] Lin G M, Li Y H, Chu K M, et al. Longitudinal mechanics of the periinfarct zone and ventricular tachycardia inducibility in patients with chronic ischemic cardiomyopathy [J]. Am Heart J, 2011, 161(4): e17.
[40] Li S, Cui J H, Hao A M, et al. Design and evaluation of personalized percutaneous coronary intervention surgery simulation system[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(11): 4150-4160.
[41] Hao A M, Cui J H, Li S, et al. Personalized cardiovascular intervention simulation system[J]. Virtual Reality & Intelligent Hardware, 2020, 2(2): 104-118.
[42] Li S, Xie Z J, Xia Q, et al. Hybrid 4D cardiovascular modeling based on patient-specific clinical images for realtime PCI surgery simulation[J]. Graphical Models, 2019, 101: 1-7.
[43] Park C, Fan Y L, Hager G, et al. An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging[J]. Science Robotics, 2020, 5(38): eaay9106.
[44] Park C, Singh M, Saeed M Y, et al. Biorobotic hybrid heart as a benchtop cardiac mitral valve simulator[J]. Device, 2024, 2(1): 100217.