[1] Kobeyev S, Tokbolat S, Nazipov F, et al. Design and modeling of an on-site greywater treatment system for ahotel building[J]. International Journal of Building Pathology and Adaptation, 2023, 41(1): 201-224.
[2] 郝晓地, 宋虹苇. 生态卫生:可持续、分散式污水处理新概念[J]. 给水排水, 2005, 31(6): 42-45.
[3] 刘玲花, 张盼伟, 李昆, 等. 灰水处理及回用技术研究综述[J]. 水利水电技术, 2019, 50(8): 146-153.
[4] 张燕燕, 程拥, 陈洪斌. MBR和BAF用于以家庭回用为目的的灰水净化研究[J]. 环境工程学报, 2016, 10(2): 623-630.
[5] 于凤. 半集中式处理系统灰水处理技术研究[D]. 上海: 同济大学, 2007.
[6] Foladori P, Petrini S, Andreottola G. Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters [J]. Chemical Engineering Journal, 2018, 345: 507-516.
[7] Hernández D, Riaño B, Coca M, et al. Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications[J]. Chemical Engineering Journal, 2016, 285: 449-458.
[8] Rada-Ariza A M, Lopez-Vazquez C M, van der Steen N P, et al. Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photobioreactors[J]. Bioresource Technology, 2017, 245(Pt A): 81-89.
[9] 樊婷婷, 李娜, 郭天鹏, 等. 不同废水培养小球藻提取生物柴油的营养优化研究[J]. 中国给水排水, 2017, 33(5): 76-79.
[10] Yin Z H, Zhu L D, Li S X, et al. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions[J]. Bioresource Technology, 2020, 301: 122804.
[11] de-Bashan L E, Bashan Y. Immobilized microalgae for removing pollutants: Review of practical aspects[J]. Bioresource Technology, 2010, 101(6): 1611-1627.
[12] Andersen R A. Algal culturing techniques[M]. Burlington, Mass: Elsevier/Academic Press, 2005.
[13] Covarrubias S A, de-Bashan L E, Moreno M, et al. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae[J]. Applied Microbiology and Biotechnology, 2012, 93(6): 2669-2680.
[14] Lau P S, Tam N F Y, Wong Y S. Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris[J]. Bioresource Technology, 1998, 63(2): 115-121.
[15] Ji X Y, Jiang M Q, Zhang J B, et al. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater[J]. Bioresource Technology, 2018, 247: 44-50.
[16] Ruiz-Güereca D A, del Pilar Sánchez-Saavedra M. Growth and phosphorus removal by Synechococcus elongatus co-immobilized in alginate beads with Azospirillum brasilense[J]. Journal of Applied Phycology, 2016, 28(3): 1501-1507.
[17] Pandey A, Katam K, Joseph P, et al. Micropollutant removal from laundry wastewater in algal-activated sludge systems: Microbial studies[J]. Water, Air, & Soil Pollution, 2020, 231(7): 374.
[18] Su Y Y. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment[J]. The Science of the Total Environment, 2021, 762: 144590.
[19] Tam N F, Wong Y S. Effect of immobilized microalgal bead concentrations on wastewater nutrient removal[J]. Environmental Pollution, 2000, 107(1): 145-151.
[20] Zeng X H, Guo X Y, Su G M, et al. Bioprocess considerations for microalgal-based wastewater treatment and biomass production[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 1385-1392.
[21] Shen Y, Gao J Q, Li L S. Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal[J]. Bioresource Technology, 2017, 243: 905-913.
[22] Song W C, Ding S X, Zhou L Q, et al. The performance of co-immobilized strains isolated from activated sludge combined with Scenedesmus quadricauda to remove nutrients and organics in black odorous water[J]. Bioresource Technology, 2022, 345: 126571.
[23] de-Bashan L E, Hernandez J P, Morey T, et al. Microalgae growth-promoting bacteria as "helpers" for microalgae: A novel approach for removing ammonium and phosphorus from municipal wastewater[J]. Water Research, 2004, 38(2): 466-474.
[24] Nishi K, Akizuki S, Toda T, et al. Advanced light-tolerant microalgae-nitrifying bacteria consortia for stable ammonia removal under strong light irradiation using light-shielding hydrogel[J]. Chemosphere, 2022, 297: 134252.
[25] Cai T, Park S Y, Li Y B. Nutrient recovery from wastewater streams by microalgae: Status and prospects[J]. Renewable and Sustainable Energy Reviews, 2013, 19: 360-369.
[26] Mujtaba G, Rizwan M, Lee K. Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris[J]. Journal of Industrial and Engineering Chemistry, 2017, 49: 145-151.
[27] Han M N, Zhang C F, Ho S H. Immobilized microalgal system: An achievable idea for upgrading current microalgal wastewater treatment[J]. Environmental Science and Ecotechnology, 2023, 14: 100227.
[28] 章楚卓, 詹健. 固定化菌藻共生体去除污水染物的机理及进展[J]. 应用化工, 2022, 51(12): 3707-3711.
[29] 黄静依, 张皓驰, 李先宁. 水产养殖废水处理的菌藻共生系统中藻种优选及氮、磷转化特性[J]. 净水技术, 2020, 39(9): 57-66.
[30] Gonçalves A L, Pires J C M, Simões M. Wastewater polishing by consortia of Chlorella vulgaris and activated sludge native bacteria[J]. Journal of Cleaner Production, 2016, 133: 348-357.
[31] Ran Z L, Zhu J, Li K, et al. Study on the membrane bioreactor for treating surfactant wastewater[J]. Journal of Water and Climate Change, 2018, 9(2): 240-248.
[32] Nikonova A A, Mizandrontsev I B, Bazhenov B N, et al. Toxic effect of anionic surfactants on freshwater sponge Lubomirskia baikalensis and its endosymbiotic microalgae Chlorella sp[J]. Diversity, 2023, 15(1): 77.
[33] Collivignarelli M C, Carnevale Miino M, Baldi M, et al. Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system[J]. Process Safety and Environmental Protection, 2019, 132: 105-115.
[34] 孙燕. SBR法处理浴池废水的试验研究[D]. 秦皇岛: 燕山大学, 2012.
[35] Wu L J, Yang Y, Guo W, et al. Deterioration of biological pollutants removal induced by linear alkylbenzene sulphonates in sequencing batch reactors: Insight of sludge characteristics, microbial community and metabolic activity[J]. Bioresource Technology, 2020, 315: 123843.
[36] Banerjee S, Tiwade P B, Sambhav K, et al. Effect of alginate concentration in wastewater nutrient removal using alginate-immobilized microalgae beads: Uptake kinetics and adsorption studies[J]. Biochemical Engineering Journal, 2019, 149: 107241.
[37] Dereszewska A, Cytawa S, Tomczak-Wandzel R, et al. The effect of anionic surfactant concentration on activated sludge condition and phosphate release in biological treatment plant[J]. Polish Journal of Environmental Studies, 2015, 24: 83-91.
[38] Hou L F, Zhou Q, Wu Q P, et al. Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant[J]. The Science of the Total Environment, 2018, 625: 449-459.
[39] Wu D, Zhang Z M, Yu Z D, et al. Optimization of F/M ratio for stability of aerobic granular process via quantitative sludge discharge[J]. Bioresource Technology, 2018, 252: 150-156.
[40] 王梦亮, 王京伟, 苏小睿. 脱氮微生物对养殖水体有机氮去除作用的研究[J]. 水处理技术, 2007, 33(6): 45- 48.
[41] Chen R, Luo Y H, Chen J X, et al. Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors[J]. Environmental Science and Pollution Research International, 2016, 23(10): 9540-9548.
[42] 李红梅, 陶高峰, 徐凌, 等. 植物功能群多样性对人工湿地微生物生物量和营养滞留的影响[J]. 植物营养与肥料学报, 2011, 17(6): 1365-1371.
[43] Singleton D R, Lee J, Dickey A N, et al. Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov[J]. Systematic and Applied Microbiology, 2018, 41(5): 460-472.
[44] Okada D Y, Delforno T P, Etchebehere C, et al. Evaluation of the microbial community of upflow anaerobic sludge blanket reactors used for the removal and degradation of linear alkylbenzene sulfonate by pyrosequencing[J]. International Biodeterioration & Biodegradation, 2014, 96: 63-70.
[45] Braga J K, Motteran F, Macedo T Z, et al. Biodegradation of linear alkylbenzene sulfonate in commercial laundry wastewater by an anaerobic fluidized bed reactor[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2015, 50(9): 946-957.
[46] Andrade M V F, Delforno T P, Sakamoto I K, et al. Dynamics and response of microbial diversity to nutritional conditions in denitrifying bioreactor for linear alkylbenzene sulfonate removal[J]. Journal of Environmental Management, 2020, 263: 110387.
[47] 常功法. 基于厌氧环境的倒置A2/O工艺生物除磷机理研究[D]. 济南: 山东大学, 2013.