Supervision and detection technology of genome-edited plants

PAN Zhiwen, ZHANG Xudong, GAO Jieer, LIU Pengcheng, YAO Juan, ZHANG Xiujie, JIANG Dagang

Science & Technology Review ›› 2021, Vol. 39 ›› Issue (9) : 87-92.

PDF(479 KB)
PDF(479 KB)
Science & Technology Review ›› 2021, Vol. 39 ›› Issue (9) : 87-92. DOI: 10.3981/j.issn.1000-7857.2021.09.010
Papers

Supervision and detection technology of genome-edited plants

Author information -
1. College of Life Sciences, South China Agricultural University;Inspection and Testing Center for Ecological and Environmental Risk Assessment of Plant and Plant-Related Microorganism(Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China;
2. Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China

Abstract

Genome editing is the technology using sequence specific nucleases to modify the target genes of organisms. In recent years, genome editing technology represented by the CRISPR/Cas system has been rapidly developed due to its accurate, efficient and easy handling. Genome editing provides important tools for research of gene function, disease treatment and plant molecular breeding. At the same time, genome-edited products appeared in large numbers would have higher demands for the supervision of government departments. In this review, we summarize three types of genome editing technology and products. We also introduce regulations of some countries and economies in genome-edited plants and corresponding products. Several detection technologies for genome-edited plants and products are also introduced. This review can provide suggestions for supervision department of GM plant products and technical reserve for testing organizations.

Key words

genome editing / CRISPR / supervision / detection method / transgene

Cite this article

Download Citations
PAN Zhiwen, ZHANG Xudong, GAO Jieer, LIU Pengcheng, YAO Juan, ZHANG Xiujie, JIANG Dagang. Supervision and detection technology of genome-edited plants[J]. Science & Technology Review, 2021, 39(9): 87-92 https://doi.org/10.3981/j.issn.1000-7857.2021.09.010

References

[1] 国际农业生物技术应用服务组织. 2018年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2019, 39(8):1-6.
[2] Papaioannou I, Simons J P, Owen J S. Oligonucleotide-directed gene-editing technology:Mechanisms and future prospects[J]. Expert Opinion on Biological Therapy, 2012, 12(3):329-342.
[3] 沈平, 章秋艳, 杨立桃, 等. 基因组编辑技术及其安全管理[J]. 中国农业科学, 2017, 50(8):1361-1369.
[4] 刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 2019, 40(5):1-12.
[5] 付伟, 魏霜, 王晨光, 等. 基因编辑作物的发展及检测监管现状[J]. 植物检疫, 2016, 30(3):1-8.
[6] 焦悦, 吴刚, 黄耀辉, 等. 基因组编辑技术及其安全评价管理[J]. 中国农业科技导报, 2018, 20(4):12-19.
[7] Pabo C O, Peisach E, Grant R A. Design and selection of novel Cys2His2 zinc finger proteins[J]. Annual Review of Biochemistry, 2001, 70(70):313-340.
[8] Li T, Huang S, Zhao X, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes[J]. Nucleic Acids Research, 2011, 39(14):6315-6325.
[9] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823.
[10] Sprink T, Eriksson D, Schiemann J, et al. Regulatory hurdles for genome editing:process-vs. product-based approaches in different regulatory contexts[J]. Plant Cell Reports, 2016, 35(7):1493-1506.
[11] Jeffrey D W, Wang K, Yang B. The regulatory status of genome-edited crops[J]. Plant Biotechnology Journal, 2015, 14(2):510-518.
[12] 何晓丹, 陈琦琦, 展进涛. 欧美等国基因组编辑生物安全管理政策及对中国的启示[J]. 中国科技论坛, 2018(8):183-188.
[13] 薛满德, 龙艳, 裴新梧. 基因编辑技术及其在作物育种中的应用与安全管理[J]. 中国农业科技导报, 2018, 20(9):12-22.
[14] Waltz E. Tiptoeing around transgenics[J]. Nature Biotechnology, 2012, 30(3):215-217.
[15] Waltz E. Gene-edited CRISPR mushroom escapes US regulation[J]. Nature, 2016, 532(7599):293-293.
[16] Jones H D. Regulatory uncertainty over genome editing[J]. Nature Plants, 2015, 1(1):14011.
[17] Araki M, Nojima K, Ishii T. Caution required for handling genome editing technology[J]. Trends in Biotechnology, 2014, 32(5):234-237.
[18] Shew A M, Danforth D M, Nalley L L, et al. New innovations in agricultural biotech:Consumer acceptance of topical RNAi in rice production[J]. Food Control, 2017, 81:189-195.
[19] 吴刚, 李文龙, 石建新, 等. 澳大利亚转基因生物安全监管概况及启示[J]. 生物技术通报, 2019, 35(3):138-143.
[20] Huang S, Weigel D, Beachy R N, et al. A proposed regulatory framework for genome-edited crops[J]. Nature Genetics, 2016, 48(2):109-111.
[21] 刘春霞, 耿立召, 许建平. 植物基因组编辑检测方法[J]. 遗传, 2018, 40(12):25-41.
[22] Ma X, Chen L, Zhu Q, et al. Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products[J]. Molecular Plant, 2015, 8(8):1285-1287.
[23] Liu W, Xie X, Ma X, et al. DSDecode:A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations[J]. Molecular Plant, 2015, 8(9):1431-1433.
[24] Guschin D Y, Waite A J, Katibah G E, et al. A rapid and general assay for monitoring endogenous gene modification[J]. Methods in Molecular Biology, 2010, 649:247-256.
[25] Gualberto R, Kidd K K. Direct haplotyping of chromosomal segments from multiple heterozygotes via allelespecific PCR amplification[J]. Nucleic Acids Research, 1989, 17(20):8392.
PDF(479 KB)

Accesses

Citation

Detail

Sections
Recommended

/