Research frontiers in soil ecology

ZHU Yongguan, CHEN Baodong, FU Wei

Science & Technology Review ›› 2022, Vol. 40 ›› Issue (3) : 25-31.

PDF(502 KB)
PDF(502 KB)
Science & Technology Review ›› 2022, Vol. 40 ›› Issue (3) : 25-31. DOI: 10.3981/j.issn.1000-7857.2022.03.002
Exclusive: Soil Ecology

Research frontiers in soil ecology

Author information -
1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
2. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Research in the area of soil ecology focuses on biodiversity and ecological functions of soil organisms,as well as the interactions of soil organisms with the environment.Here we summarize the main research directions and contents in soil ecology,introduce concurrent hot topics and research progress,and discuss research prospects.The research of soil ecology may help recognition and utilization of soil biological resources and provide scientific theories and technological support to cope with environmental changes,restore degraded ecosystems,and develop sustainable agriculture.

Key words

soil ecosystem / soil biota / ecological function / biodiversity / environmental change

Cite this article

Download Citations
ZHU Yongguan, CHEN Baodong, FU Wei. Research frontiers in soil ecology[J]. Science & Technology Review, 2022, 40(3): 25-31 https://doi.org/10.3981/j.issn.1000-7857.2022.03.002

References

[1] Darwin C. The formation of vegetable mould through the action of worms:With observations on their habits[M]. London:John Murray, 1881.
[2] Bardgett R D, van der Putten W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7528):505-511.
[3] 褚海燕,王艳芬,时玉,等.土壤微生物生物地理学研究现状与发展态势[J].中国科学院院刊, 2017, 32(6):585-592.
[4] Martiny J B H, Bohannan B J M, Brown J H, et al. Microbial biogeography:Putting microorganisms on the map[J]. Nature Reviews Microbiology, 2006, 4(2):102-112.
[5] Bahram M, Hildebrand F, Forslund S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717):233-237.
[6] Phillips H R P, Guerra C A, Bartz M L C, et al. Global distribution of earthworm diversity[J]. Science, 2019, 366(6464):480-485.
[7] Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality[J]. Nature, 2007, 448(7150):188-190.
[8] Manning P, van der P F, Soliveres S, et al. Redefining ecosystem multifunctionality[J]. Nature Ecology & Evolution, 2018, 2(3):427-436.
[9] Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14):5266-5270.
[10] Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10(1):4841.
[11] Chen Q L, Ding J, Zhu D, et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils[J]. Soil Biology and Biochemistry, 2020, 141:107686.
[12] Chen Q L, Ding J, Zhu Y G, et al. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity[J]. Environment International, 2020, 140:105766.
[13] Delgado-Baquerizo M, Maestre F T, Reich P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature communications, 2016, 7:10541.
[14] Lynch M D J, Neufeld J D. Ecology and exploration of the rare biosphere[J]. Nature Reviews Microbiology, 2015, 13(4):217-229.
[15] Rivett D W, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities[J]. Nature Microbiology, 2018, 3(7):767-772.
[16] Banerjee S, Schlaeppi K, van der Heijden M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018, 16(9):567-576.
[17] Fan K K, Delgado-Baquerizo M, Guo X S, et al. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment[J]. The ISME Journal, 2021, 15(2):550-561.
[18] Bond-Lamberty B, Bailey V L, Chen M, et al. Globally rising soil heterotrophic respiration over recent decades[J]. Nature, 2018, 560(7716):80-83.
[19] Geisen S, Wall D H, van der Putten W H. Challenges and opportunities for soil biodiversity in the anthropocene[J]. Current Biology, 2019, 29(19):1036-1044.
[20] Seibold S, Gossner M M, Simons N K, et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers[J]. Nature, 2019, 574(7780):671-674.
[21] Delgado-Baquerizo M, Guerra C A, Cano-Díaz C, et al. The proportion of soil-borne pathogens increases with warming at the global scale[J]. Nature Climate Change, 2020, 10(6):550-554.
[22] Zhao Z B, He J Z, Geisen S, et al. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils[J]. Microbiome, 2019, 7(1):33.
[23] Rillig M C, Ryo M, Lehmann A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity[J]. Science, 2019, 366(6467):886-890.
[24] Lehmann J, Bossio D A, Kogel-Knabner I, et al. The concept and future prospects of soil health[J]. Nature Reviews Earth & Environment, 2020, 1(10):544-553.
[25] 朱永官,彭静静,韦中,等.土壤微生物组与土壤健康[J].中国科学:生命科学, 2021, 51(1):1-11.
[26] 陈保冬,赵方杰,张莘,等.土壤生物与土壤污染研究前沿与展望[J].生态学报, 2015, 35(20):6604-6613.
[27] Singh B K, Quince C, Macdonald C A, et al. Loss of microbial diversity in soils is coincident with reductions in some specialized functions[J]. Environmental Microbiology, 2014, 16(8):2408-2420.
[28] 陈保冬,张莘,伍松林,等.丛枝菌根影响土壤-植物系统中重金属迁移、转化和累积过程的机制及其生态应用[J].岩矿测试, 2019, 38(1):1-25.
[29] van den Hoogen J, Geisen S, Routh D, et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019, 572(7768):194-198.
[30] Oliverio A M, Geisen S, Delgado-Baquerizo M, et al. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances, 2020, 6(4):eaax8787.
[31] Geisen S, Hu S R, dela Cruz T E E, et al. Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes[J]. The ISME Journal, 2021, 15(2):618-621.
[32] Morri & #235;n E, Hannula S E, Snoek L B, et al. Soil networks become more connected and take up more carbon as nature restoration progresses[J]. Nature Communications, 2017, 8:14349.
[33] Gao Z L, Karlsson I, Geisen S, et al. Protists:Puppet masters of the rhizosphere microbiome[J]. Trends in Plant Science, 2019, 24(2):165-176.
[34] Jiang Y J, Luan L, Hu K J, et al. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences[J]. Microbiome, 2020, 8(1):142.
[35] Saleem M, Hu J, Jousset A. More than the sum of its parts:Microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50(1):145-168.
[36] 孙新,李琪,姚海凤,等.土壤动物与土壤健康[J].土壤学报, 2021, 58(5):1073-1083.
[37] Wei Z, Gu Y, Friman V P, et al. Initial soil microbiome composition and functioning predetermine future plant health[J]. Science Advances, 2019, 5(9):eaaw0759.
[38] Delgado-Baquerizo M, Reich P B, Trivedi C, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes[J]. Nature Ecology & Evolution, 2020, 4(2):210-220.
[39] de Vries F T, Griffiths R I, Knight C G, et al. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science, 2020, 368(6488):270-274.
[40] 朱冬,陈青林,丁晶,等.土壤生态系统中抗生素抗性基因与星球健康:进展与展望[J].中国科学:生命科学, 2019, 49(12):1652-1663.
[41] Zhu D, Xiang Q, Yang X R, et al. Trophic transfer of antibiotic resistance genes in a soil detritus food chain[J]. Environmental Science & Technology, 2019, 53(13):7770-7781.
[42] Zheng F, Bi Q F, Giles M, et al. Fates of antibiotic resistance genes in the gut microbiome from different soil fauna under long-term fertilization[J]. Environmental Science & Technology, 2021, 55(1):423-432.
[43] Hu H W, Wang J T, Li J, et al. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils[J]. Environmental Science & Technology, 2017, 51(2):790-800.
[44] Li M, Wei Z, Wang J N, et al. Facilitation promotes invasions in plant-associated microbial communities[J]. Ecology Letters, 2019, 22(1):149-158.
[45] Biessy A, Filion M. Phenazines in plant-beneficial Pseudomonas spp.:Biosynthesis, regulation, function and genomics[J]. Environmental Microbiology, 2018, 20(11):3905-3917.
[46] Xiong W, Song Y Q, Yang K M, et al. Rhizosphere protists are key determinants of plant health[J]. Microbiome, 2020, 8(1):27.
[47] Wang X F, Wei Z, Yang K M, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12):1513-1520.
[48] Hou S J, Thiergart T, Vannier N, et al. A microbiotaroot-shoot circuit favours Arabidopsis growth over defence under suboptimal light[J]. Nature Plants, 2021(7):1078-1092.
PDF(502 KB)

Accesses

Citation

Detail

Sections
Recommended

/