New progress of the visual system in birds of prey

LI Han, DUAN Haibin, LI Shuyu

Science & Technology Review ›› 2018, Vol. 36 ›› Issue (17) : 52-67.

PDF(3300 KB)
PDF(3300 KB)
Science & Technology Review ›› 2018, Vol. 36 ›› Issue (17) : 52-67. DOI: 10.3981/j.issn.1000-7857.2018.17.007
Exclusive: Artificial Intelligence

New progress of the visual system in birds of prey

Author information -
1. Science and Technology on Aircraft Control Laboratory, School of Automation and Electrical Engineering, Beihang University, Beijing 100083, China;
2. School of Biological Science and Medical Engineering, Beihang University;Advanced Innovation Center for Biomedical Engineering of Beijing, Beijing 100083, China

Abstract

Birds rely most heavily on their ability to assess their visual environment. The current research situation of vision of birds of prey is introduced and the characteristics of the photographic systems in different families of birds of prey are compared. First, the anatomy structure of the periphery is described, including the eyeball and lens, by which the basic differences between birds of prey and other avian are analyzed. Then the visual information processing pathway and the optic center are introduced and the special color perception, double fovea and unusual visual acuity of the birds of prey are elaborated. Finally, the current research methods, existing problems and future trends are discussed.

Key words

vision in bird of prey / periphery physiology structure / visual pathway / visual information perception

Cite this article

Download Citations
LI Han, DUAN Haibin, LI Shuyu. New progress of the visual system in birds of prey[J]. Science & Technology Review, 2018, 36(17): 52-67 https://doi.org/10.3981/j.issn.1000-7857.2018.17.007

References

[1] Jetz W, Thomas G, Joy J, et al. The global diversity of birds in space and time[J]. Nature, 2012, 491:444-448.
[2] 闻丞, 宋晔, 张代富, 等. 猛禽:鸟中王者[J]. 森林与人类, 2013(11):8-27. Wen Cheng, Song Ye, Zhang Daifu, et al. Falcon:The king of the birds[J]. Foretst and Humanbeing, 2013(11):8-27.
[3] Bohórquez G A M, Oliveira A C. An additional bone in the sclera of the eyes of owls and the common potoo (Nictibius Griseus) and its role in the contraction of the nictitating membrane[J]. Acta Anatomica, 1998, 163(4):201-211.
[4] Birdeye[EB/OL].[2008-07-14]. https://en.wikipedia.org/wiki/File:Birdeye.jpg.
[5] Murphy C J, Dubielzig R R. The gross and microscopic structure of the golden eagle (Aquila Chrysaetos) eye[J]. Programs in Veterinary and Comparative Ophthalmology, 1993, 3:74-79.
[6] Samuelson D A. Ophthalmic anatomy[M]//Gelatt K N. Veterinary Ophthalmology. 3rd ed. Baltimore:Lippincott Williams & Wilkins, 1991:31-150.
[7] Evans H E, Martin G R. Organa sensuum[Organa sensoria] [M]//Baumel J J, King A S, Breazile J E, et al. Handbook of Avian Anatomy. Cambridge:University of Cambridge, Nuttall Ornithological Club, 1993(23):585-611.
[8] Kern T J. Disorders of the special senses[M]//Altman R B, Clubb S L, Dorrestein G M, et al. Avian Medicine and Surgery. Philadelphia:WB Saunders, 1997:563-589.
[9] Oliphant L W. Cytology and pigments of non-melanophore chromatophores in the Avian Iris[J]. Progress in Clinical and Biological Research, 1988, 256:65-82.
[10] Oliphant L W, Johnson M R, Murphy C, et al. The musculature and pupillary response of the great horned owl iris[J]. Experimental Eye Research, 1983, 37(6):583-595.
[11] King A S, McLelland J. Special sense organs[M]//Birds, Their Structure and Function. London:Baillière Tindall, 1984:284-314.
[12] Jones M P, Pierce K E, Ward D. Avian vision:A review of form and function with special consideration to birds of prey[J]. Journal of Exotic Pet Medicine, 2007, 16(2):69-87.
[13] Shlaer R. An eagle's eye:Quality of the retinal image[J]. Science, 1972, 176(4037):920-922.
[14] Ohayon S, Harmening W, Wagner H, et al. Through a barn owl's eyes:Interactions between scene content and visual attention[J]. Biological Cybernetics, 2008, 98(2):115-132.
[15] Lord R D. A comparative study of the eyes of some falconiform and passeriform birds[J]. American Midland Naturalist, 1956, 56(2):325-344.
[16] Fite K V, Rosenfield-Wessels S. A comparative study of deep avian foveas[J]. Brain, Behavior and Evolution, 1975, 12(1/2):97-115.
[17] Hodos W, Miller R F, Fite K V. Age-dependent changes in visual acuity and retinal morphology in pigeons[J]. Vision Research, 1991, 31(4):669-677.
[18] Katzir G, Howland H C. Corneal power and underwater accommodation in great cormorants (phalacrocorax carbo sinensis)[J]. Journal of Experimental Biology, 2003, 206(5):833-841.
[19] Schaeffel F, Howland H C, Farkas L. Natural accommodation in the growing chicken[J]. Vision Research, 1986, 26(12):1977-1993.
[20] Levy B, Sivak J G. Mechanisms of accommodation in the bird eye[J]. Journal of Comparative Physiology, 1980, 137(3):267-272.
[21] Murphy C J, Howland H C. Owl eyes:Accommodation, corneal curvature and refractive state[J]. Journal of Comparative Physiology, 1983, 151(3):277-284.
[22] Sivak J G. Through the lens clearly:Phylogeny and development:the proctor lecture[J]. Investigative Ophthalmology & Visual Science, 2004, 45(3):740-747.
[23] 寿天德. 视觉信息处理的脑机制[M]. 合肥:中国科学技术大学出版社, 2010. Shou tiande. Brain mechanisms of visual information processing[M]. Hefei:University of Science and Technology of China Press, 2010.
[24] 唐宗湘, 马殷华. 鸟类视觉系统的离顶盖通路[J]. 广西师范大学学报(自然科学版), 2004, 22(4):78-82. Tang Zongxiang, Ma Yinhua. The toctofugal pathway in birds visual system[J]. Journal of Guangxi Normal University(Natural Science Edition), 2004, 22(4):78-82.
[25] Zhang T, Fu Y X, Hu J, et al. Receptive field characteristics of neurons in the nucleus of the basal optic root in pigeons.[J]. Neuroscience, 1999, 91(1):33-40.
[26] Palacios A G, Goldsmith T H. Photocurrents in retinal rods of pigeons (Columba Livia):Kinetics and spectral sensitivity[J]. The Journal of Physiology, 1993, 471(1):817-829.
[27] Neitz J, Geist T, Jacobs G H. Color vision in the dog[J]. Visual Neuroscience, 1989, 3(2):119-125.
[28] Carroll J, Murphy C J, Neitz M, et al. Photopigment basis for dichromatic color vision in the horse[J]. Journal of Vision, 2001, 1(2):2.
[29] Ringo J, Wolbarsht M L, Wagner H G, et al. Trichromatic vision in the cat[J]. Science, 1977, 198(4318):753-755.
[30] Chen D M, Collins J S, Goldsmith T H. The ultraviolet receptor of bird retinas[J]. Science, 1984, 225(4659):337-340.
[31] Goldsmith T H. Hummingbirds see near ultraviolet light[J]. Science, 1980, 207(4432):786-788.
[32] Güntürkün O. Sensory physiology:Vision[M]//Whittow G C. Sturkies Avian Physiology. 5th ed. New York:Academic Press, 2000:1-19.
[33] Emmerton J, Delhis J D. Wavelength discrimination in the ‘visible’ and ultraviolet spectrum by pigeons[J]. Journal of Comparative Physiology, 1980, 141(1):47-52.
[34] Jane S D, Bowmaker J K. Tetrachromatic colour vision in the duck (Anas Platyrhynchos L.):Microspectrophotometry of visual pigments and oil droplets[J]. Journal of Comparative Physiology A, 1988, 162(2):225-235.
[35] Livingstone M. Vision and art:The biology of seeing[M]. New York:Harry N. Abrams, Incorporated Company, 2002:27-35.
[36] Bowmaker J K, Martin G R. Visual pigments and colour vision in a nocturnal bird, Strix aluco (tawny owl)[J]. Vision Research, 1978, 18(9):1125-1130.
[37] Viitala J, Korplmäki E, Palokangas P, et al. Attraction of kestrels to vole scent marks visible in ultraviolet light[J]. Nature, 1995, 373(6513):425.
[38] Orlowski J, Harmening W, Wagner H. Night vision in barn owls:Visual acuity and contrast sensitivity ender dark adaptation[J]. Journal of Vision, 2012, 12(13):1-8.
[39] Braekevelt C R, Smith S A, Smith B J. Fine structure of the retinal photoreceptors of the barred owl (strix varia)[J]. Histology and Histopathology, 1996, 11(1):79-88.
[40] Kreithen M L, Keeton W T. Detection of polarized light by the homing pigeon, columba livia[J]. Journal of Comparative Physiology, 1974, 89(1):83-92.
[41] Meyer D B. The avian eye and its adaptations[M]//Crescitelli F. The Visual System in Vertebrates. New York:SpringerVerlag, 1977:549-611.
[42] Walls G L. Significance of the foveal depression[J]. Archives of Ophthalmology, 1937, 18(6):912-919.
[43] Inzunza O, Bravo H, Smith R L, et al. Topography and morphology of retinal ganglion cells in falconiforms:A study on predatory and carrion-eating birds[J]. The Anatomical Record, 1991, 229(2):271-277.
[44] Snyder A W, Miller W H. Telephoto lens system of falconiform eyes[J]. Nature, 1978, 275(5676):127.
[45] Hirsch J. Falcon visual sensitivity to grating contrast[J]. Nature, 1982, 300(5887):57-58.
[46] Tucker V A. The deep fovea, sideways vision and spiral flight paths in raptors[J]. Journal of Experimental Biology, 2000, 203(24):3745-3754.
[47] Tucker V A. Gliding flight:Drag and torque of a hawk and a falcon with straight and turned deads, and a lower value for the parasite drag coefficient[J]. Journal of Experimental Biology, 2000, 203(24):3733-3744.
[48] Tucker V A, Tucker A E, Akers K, et al. Curved flight paths and sideways vision in peregrine falcons (falco peregrinus)[J]. Journal of Experimental Biology, 2000, 203(24):3755-3763.
[49] Ponitz B, Schmitz A, Fischer D, et al. Diving-flight aerodynamics of a peregrine falcon (falco peregrinus)[J]. PLoS One, 2014, 9(2):e86506.
[50] Locket N A. Problems of deep foveas[J]. Clinical & Experimental Ophthalmology, 1992, 20(4):281-295.
[51] Pumphrey R J. The theory of the fovea[J]. Journal of Experimental Biology, 1948, 25(3):299-312.
[52] Gaffney M F, Hodos W. The visual acuity and refractive state of the american kestrel (falco sparverius)[J]. Vision Research, 2003, 43(19):2053-2059.
[53] Reymond L. Spatial visual acuity of the eagle aquila audax:A behavioural, optical and anatomical investigation[J]. Vision Research, 1985, 25(10):1477-1491.
[54] Reymond L. Spatial visual acuity of the falcon, falco berigora:A behavioural, optical and anatomical investigation[J]. Vision Research, 1987, 27(10):1859-1874.
[55] Waldvogel J A. The bird's eye view[J]. American Scientist, 1990, 78(4):342-353.
[56] Vallortigara G, Cozzutti C, Tommasi L, et al. How birds use their eyes:Opposite left-right specialization for the lateral and frontal visual hemifield in the domestic chick[J]. Current Biology, 2001, 11(1):29-33.
[57] O'Rourke C T, Hall M I, Pitlik T, et al. Hawk eyes I:Diurnal raptors differ in visual fields and degree of eye movement[J]. PLoS One, 2010, 5(9):e12802.
[58] O'Rourke C T, Pitlik T, Hoover M, et al. Hawk eyes Ⅱ:Diurnal raptors differ in head movement strategies when scanning from perches[J]. PloS One, 2010, 5(9):e12169.
[59] Martin G R. Total panoramic vision in the mallard duck, anas platyrhynchos[J]. Vision Research, 1986, 26(8):1303-1305.
[60] Martin G R, Katzir G. Visual fields in short-toed eagles, circaetus gallicus (accipitridae), and the function of binocularity in birds[J]. Brain, Behavior and Evolution, 1999, 53(2):55-66.
[61] Martin G R. Visual Fields and their functions in birds[J]. Journal of Ornithology, 2007, 148(2):547-562.
[62] Martin G R, Portugal S J, Murn C P. Visual fields, foraging and collision vulnerability in gyps vultures[J]. Ibis, 2012, 154(3):626-631.
[63] Hughes A. The topography of vision in mammals of contrasting life style:Comparative optics and retinal organisation[M]//Crescitelli F. The Visual System in Vertebrates. Berlin:Springer-Verlag, 1977:613-756.
[64] Fox R, Lehmkuhle S W, Westendorf D H. Falcon visual acuity[J]. Science, 1976, 192(4236):263-265.
[65] Dvorak D, Mark R, Reymond L. Factors underlying falcon grating acuity[J]. Nature, 1983, 303(5919):729-730.
[66] Potier S, Bonadonna F, Kelber A, et al. Visual acuity in an opportunistic raptor, the chimango caracara (milvago chimango)[J]. Physiology & Behavior, 2016, 157:125-128.
[67] Martin G R, Gordon I E. Increment-threshold spectral sensitivity in the tawny owl (strix aluco)[J]. Vision Research, 1974, 14(8):615-621.
[68] Wathey J C, Pettigrew J D. Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl Tyto Alba[J]. Brain, Behavior and Evolution, 1989, 33(5):279-292.
[69] Rucci M, Wray J, Edelman G M. Robust localization of auditory and visual targets in a robotic barn owl[J]. Robotics and Autonomous Systems, 2000, 30(1):181-193.
[70] Schaeffel F, Wagner H. Emmetropization and optical development of the eye of the barn owl (Tytoalba)[J]. Journal of Comparative Physiology A, 1996, 178(4):491-498.
[71] Harmening W M, Göbbels K, Wagner H. Vernier acuity in barn owls[J]. Vision Research, 2007, 47(7):1020-1026.
[72] Harmening W M, Nikolay P, Orlowski J, et al. Spatial contrast sensitivity and grating acuity of barn owls[J]. Journal of Vision, 2009, 9(7):1-12.
[73] Floreano D, Pericet-Camara R, Viollet S, et al. Miniature curved artificial compound eyes[J]. Proceedings of the National Academy of Sciences, 2013, 110(23):9267-9272.
[74] Zahar Y, Wagner H, Gutfreund Y. Responses of tectal neurons to contrasting stimuli:An electrophysiological study in the barn owl[J]. PloS One, 2012, 7(6):e39559.
[75] Orlowski J, Beissel C, Rohn F, et al. Visual pop-out in barn owls:Human-like behavior in the avian brain[J]. Journal of Vision, 2015, 15(14):4.
[76] Haddon C, Smithers L, Schneider M S, et al. Multiple delta genes and lateral inhibition in zebrafish primary neurogenesis[J]. Development, 1998, 125(3):359-370.
[77] Fox R, Lehmkuhle S W, Bush R C. Stereopsis in the falcon[J]. Science, 1977, 197(4298):79-81.
[78] Ruggeri M, Major J C, McKeown C, et al. Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 2010, 51(11):5789-5795.
[79] Ruggeri M, Major J C, McKeown C, et al. In vivo imaging of raptor retina with ultra high resolution spectral domain optical coherence tomography[C]//Ophthalmic Technologies XVⅢ. San Jose:International Society for Optics and Photonics, 2008, 6844:684402.
[80] 李言俊, 张科. 视觉仿生成像制导技术及应用[M]. 北京:国防工业出版社, 2006. Li Yanjun, Zhang Ke. Vision bionics image guidance technique and application[M]. Beijing:National Defense Industry Press, 2006.
[81] Duan H B, Deng Y M, Wang X H, et al. Biological eagle-eyebased visual imaging guidance simulation platform for unmanned flying vehicles[J]. Aerospace & Electronic Systems Magazine IEEE, 2013, 28(12):36-45.
[82] Duan H B, Zhang Q F, Deng Y M, et al. Biologically eagleeye-based autonomous aerial refueling for unmanned aerial vehicles[J]. Chinese Journal of Scientific Instrument, 2014, 35(7):1450-1457.
[83] 赵国治, 段海滨. 仿鹰眼视觉技术研究进展[J]. 中国科学:技术科学, 2017, 47:514-523. Zhao Guozhi, Duan Haibin. Progresses in biological eagleeye vision technology(in Chinese)[J]. Scientia Sinica Technologica, 2017, 47:514-523.
[84] Lin L, Ramesh B, Xiang C. Biologically inspired composite vision system for multiple depth-of-field vehicle tracking and speed detection[C]//Asian Conference on Computer Vision. Berlin:Springer-Verlag, 2014:473-486.
[85] 刘颜. 妙用仿生技术的鹰眼镜头[J]. 军事文摘, 2015(8):26. Liu Yan. Magic effect of the bionic technology in designing the eagle-eyed lens[J]. Military Digest, 2015(8):26.
[86] 常军, 冯驰, 查为懿, 等. 双小凹局部高分辨率成像系统:CN104102018A[P]. 2014-10-15. Chang Jun, Feng Chi, Zha Weiyi, et al. Bifoveal based local high resolution imaging system:CN104102018A[P]. 2014-10-15.
[87] 段海滨, 邓亦敏, 孙永斌. 一种可分辨率变换的仿鹰眼视觉成像装置及其成像方法:CN105516688A[P]. 2016-04-20.Duan Haibin, Deng Yimin, Sun Yongbin. An eagle eye based variable resolution imaging device and method:CN1055166-88A[P]. 2016-04-20.
[88] Aaron D L, Ram M N, Timothy J K, et al. Analysis and implementation of the foveated vision of the raptor eye[C]//Image Sensing Technologies:Materials, Devices, Systems, and Applications Ⅲ. Baltimor:International Society for Optics and Photonics, 2016, 9854:98540T.
PDF(3300 KB)

Collection(s)

人工智能专题

453

Accesses

0

Citation

Detail

Sections
Recommended

/