Research on human-robot interaction telerobot with force telepresence

SONG Aiguo

Science & Technology Review ›› 2015, Vol. 33 ›› Issue (23) : 100-109.

PDF(24449 KB)
PDF(24449 KB)
Science & Technology Review ›› 2015, Vol. 33 ›› Issue (23) : 100-109.

Research on human-robot interaction telerobot with force telepresence

Author information -
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Abstract

Human-robot interaction telerobot is currently a frontier and hot-point of robotics research. Telepresence is a core technique of the human-robot interaction. In this paper, we review the history of the telepresence telerobot technology, and illustrate the architecture of the telepresence telerobot system. There are three foundmental problems in force telepresence telerobot research:force perception, force feedback, and force control under time delay. Then we discuss its four key techniques, that is, sensing technique, force feedback and tactile display technique, control strategy under time delay, and predictive virtual environment modeling. We briefly introduce the development of telepresence telerobot research and its applications to nuclear detection and rehabilitation therapy areas at Southeast University during the past two decades. At last, we point out some future research directions of the human-robot interaction telerobot with force telepresence.

Key words

force telepresence / teleoperation / robot sensor / haptic display / time delay / control / virtual environment

Cite this article

Download Citations
SONG Aiguo. Research on human-robot interaction telerobot with force telepresence[J]. Science & Technology Review, 2015, 33(23): 100-109

References

[1] William T, Ziemke M C. Intelligent teleoperators next generation robots[C]//Proceedings of IEEE International Conference on Systems, Man, and Cybernet- ics. New York: IEEE, 1988: 113-116.
[2] Fukuda T, Fujisawa Y, Arai H. Man-robot cooperation work type of manipulator[C]//Proceedings of 8th Annual Conference of Robotics Society of Japan. Tokyo: The Robotics Society of Japan, 1990: 555-656.
[3] 黄惟一, 宋爱国. 力觉临场感遥控作业系统的研究进展[J]. 东南大学学报: 自然科学版, 1995, 25(4): 112-119.
[4] Kazerooni H. Human-robot interaction via the transfer of power and information signals[J]. IEEE Transactions on Systems, Man and Cybernetics, 1990, 20 (2): 450-463.
[5] Bejczy A K, Hannaford B. Man-machine interaction in space telerobotics[J]. Proceedings of International Symposium on Teleoperation and Control. New York: Springer-Verlag, 1988: 241-252.
[6] Sheridan T B. Teleoperation, telerobotics and telepresence: A progress report[J]. Control Engineering Practice, 1995, 3(2): 205-214.
[7] Satava R M. Robotics, telepresence and virtual reality-A critical analysis of the future of surgery[J]. Minimally Invasive Therapy & Allied Technologies, 1992, 1(6): 357-363.
[8] Caldwell D G, Wardle A, Kocak O. Telepresence feedback and input systems for a twin armed mobile robot[J]. IEEE Robotics & Automation Magazine, 1996, 3(3): 29-38.
[9] Tachi S, Arai H, Maeda T. Tele-existence master slave system for remote manipulation[C]//Proceedings of 29th IEEE Conference on Decision and Control. San Francisco: IEEE Press, 1990: 85-90.
[10] Chipalkatty R, Daepp H, Egerstedt M, et al. Human-in-the-Loop: MPC for shared control of a quadruped rescue robot[C]. 2011 IEEE International Con- ference on Intelligent Robots and Systems, San Francisco, CA, USA, September 25-30, 2011.
[11] Hasser C J, Daniels M W. Tactile feedback with adaptive controller for a force-reflecting haptic display. 1. Design[C]//Proceedings of the 1996 Fifteenth Southern Biomedical Engineering Conference. New York: IEEE, 1996: 526-529.
[12] Maneewarn T, Hannaford B. Haptic feedback of kinematic conditioning for telerobotic applications[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Canada, October 13-17, 1998.
[13] Pretlove J, Augmenting reality for telerobotics: Unifying real and virtual worlds[J]. Industrial Robot, 1998, 25(6): 401-409.
[14] Kalaycioglu S, Seifu S. Ground-based control of space station freedom-based robots[C]. Proceedings of 1992 IEEE International Conference on Robotics and Automation, Los Alamitos, CA: IEEE Computer Society Press, 1992: 2796-2798.
[15] Tachi S, Arai H. Design and evaluation of a visual-display with a sensation of presence in tele-existence system[J]. Journal of Mechanical Engineering Laboratory, 1992, 46(2): 228-241.
[16] Hirzinger G, Brunner B, Dietrich J. Sensor-based space robotics-ROTEX and its telerobotic features[J]. IEEE Transactions on Robotics and Automation, 1993, 9(5): 649-663.
[17] 宋爱国, 黄惟一. 临场感遥控作业系统的发展[J]. 高技术通讯, 1996, 6(6): 57-61.
[18] Tachi S. Tele-existence[J]. Journal of Robotics and Mechatronics, 1992, 4(1): 7-12.
[19] 宋爱国. 力觉临场感的理论与实验研究[D]. 南京: 东南大学, 1996.
[20] Omar S I, Hernandez A, McLauchlan R, et al. An approach for the teleoperator control of the Stanford/JPL Dexterous Hand[C]. Proceedings of IEEE In- ternational Conference on Systems, Man, and Cybernetics. New York: IEEE, 1997: 4303-4308.
[21] Perry D M. Multi-axis force and torque sensing[J]. Sensor Review, 1997, 17(2): 117-120.
[22] Huang Weiyi, Jiang Hongming, Zhou Hanqing. Mechanical analysis of a novel 6-degree-of-freedom wrist force sensor[J]. Sensors and Actuators A-Physi- cal, 1993, 35(3): 203-208.
[23] 秦岗, 曹效英, 宋爱国, 等. 新型四维腕力传感器弹性体的有限元分析[J]. 传感技术学报, 2003(3): 238-241.
[24] Song Aiguo, Wu Juan, Qin Gang, et al. A novel self-decoupled four degree-of-freedom wrist force/torque sensor[J]. Measurement, 2007, 40(9): 883-891.
[25] Song Aiguo, Han Yezhen, Hu Haihua, et al. A novel texture sensor for fabric texture measurement and classification[J]. IEEE Transactions on Instrumen- tation and Measurement, 2014, 63(7): 1739-1747.
[26] Song Aiguo, Song Guangming. Constantinescu Daniela, et al. Sensors for robotics[J]. Journal of Sensors, 2013, 2013: 1-3.
[27] Sheridan Thomas B. Telerobotics[J]. Automatica, 1989, 25(4): 487-507.
[28] Yoon W K, Goshozono T, Kawabe H, et al. Model-based space robot teleoperation of ETS-VII manipulator[J]. IEEE Transactions on Robotics and Automation, 2004, 20(3): 602-612.
[29] Mitsushige Oda, Wakata K. Tele-manipulation of a satellite mounted robot by an on-ground astronaut[C]. 2001 IEEE International Conference on Robot- ics and Automation, Seoul, Korea, May 21-26, 2001.
[30] 崔建伟, 宋爱国, 黄惟一, 等. 一种新型六自由度通用型手控器[J]. 中国机械工程, 2005, 16(4): 320-323.
[31] 吴常铖, 宋爱国. 一种七自由度力反馈手控器测控系统设计[J]. 测控技术, 2013, 32(4): 70-73.
[32] 陆熊, 宋爱国. 力/触觉再现设备的研究现状与应用[J]. 测控技术, 2008, 27(8): 6-10.
[33] Song Aiguo, Morris D, Colgate J E. Haptic telemanipulation of soft environment without direct force feedback[C]. 2005 IEEE International Conference on Information Acquisition, Hong Kong, June 27-30, 2005.
[34] Chen Xu, Song Aiguo, Li Jianqing. A new design of texture haptic display system[C]. 2006 IEEE International Conference on Information Acquisition, Weihai, China, August 20-23, 2006.
[35] 戴金桥, 王爱民, 宋爱国, 等. 适用于力反馈数据手套的被动力觉驱动器[J]. 东南大学学报: 自然科学版, 2010, 40(1): 123-127.
[36] Raju G. Design issue in 2-port networks models of bilateral remote manipulation[J]. IEEE Transaction on Automatic Control, 1989, 34(3): 1316-1321.
[37] Anderson R J, Spong M W. Bilateral control of teleoperation with time delay[J]. IEEE Transaction on Automatic Control, 1989, 34(3): 494-503.
[38] Niemeyer G, Slotine J J. Stable adaptive teleoperation[J]. IEEE Journal of Oceanic Engineering, 1991, 16(1): 152-163.
[39] Hannaford B. Performance testing of passive communication and control in teleoperation with time delay[C]//Proceedings of 1993 IEEE International Con- ference on Robotics and Automation, Atlanta, Georgia, USA, May 2-6, 1993.
[40] Niemeyer G, Slotine J J. Towards force reflecting teleoperation over the Internet[C]// Proceedings of 1998 IEEE International Conference on Robotics and Automation, 1998: 1909-1915.
[41] Xi Ning, Tarn T J. Action synchronization and control of Internet based telerobotic systems[C]. 1999 IEEE International Conference on Robotics and Au- tomation. Detroit Michigan, May 10-15, 1999.
[42] Chopra N, Spong M W, Hirche S, et al. Bilateral teleoperation over the internet: the time varying delay problem[C]//Proceedings of the 2003 American Control Conference. Denver, CO, USA, June 4-6, 2003.
[43] Li H J, Song A G. Virtual-environment modeling and correction for force-reflecting teleoperation with time delay[J]. IEEE Transactions on Industrial Electronics, 2007, 54(2): 1227-1233.
[44] Song Aiguo, Pan Lizheng, Xu Guozheng, et al. Adaptive motion control of arm rehabilitation robot based on impedance identification[J]. Robotica, 2015, 33: 1795-1812.
[45] Arcara P, Melchiorri C. Control schemes for teleoperation with time delay: A comparative study[J]. Robotics and Autonomous Systems, 2002, 38(1): 49-64.
[46] Xi Ning, Tarn T J. Stability ananlysis of non-time referenced Internet-based telerobotic systems[J]. Robotics and Autonomous Systems, 2000, 32(2): 173- 178.
[47] Yokokohji Y, Yoshikawa T. Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment[J]. IEEE Transac- tions on Robotics and Automation, 1994, 10(5): 605-620.
[48] Leung G M H, Francis B A, Apkarian J. Bilateral controller for teleoperators with time delay via mu synthesis[J]. IEEE Transactions on Robotics and Au- tomation, 1995, 11(1): 105-116.
[49] Yan J, Salcudean S E. Teleoperation controller design using H∞ optimation with application to motion-scaling[J]. IEEE Transactions on Control System and Technology, 1996, 4(3): 244-258.
[50] Razi K, YazdanPanah M J. Nonlinear H∞ control of a bilateral nonlinear teloperation system[C]. 17th IFAC World Congress, Seoul, Korea, July 6-11, 2008.
[51] Kim W S, Bejczy A K. Graphics displays for operator aid in telemanipulation[C]//Proceedings of IEEE International Conference on Robotics and Automa- tion. Sacramento Califomia: IEEE Computer Society Press, 1991: 1059-1067.
[52] Schebor F S, Turney J L. Realistic and consistent telerobotic simulation[C]//Proceedings of IEEE International Conference on Systems, Man, and Cyber- netics. New York: IEEE, 1991.
[53] Edwards L, Sims M, Kunz C, et al. Photo-realistic terrain modeling and visualization for mars exploration rover science operations[C]. 2005 IEEE Inter- national Conference on Systems, Man and Cybernetics, Waikoloa, Hawaii, USA, October 10-12, 2005.
[54] 刘威. 基于虚拟现实的力觉临场感遥操作研究[D]. 南京: 东南大学, 2006.
[55] 唐鸿儒, 宋爱国, 章小兵. 基于宏行为的侦察机器人事务执行机制研究[J]. 机器人, 2007, 29(2): 97-105.
[56] Qian K, Song A G, Bao J T, et al. Small teleoperated robot for nuclear radiation and chemical leak detection[J]. International Journal of Advanced Robot- ic Systems, 2012, 9: 1-9.
[57] Guo Yan, Song Aiguo, Bao Jiatong, et al. Research on centroid position for stairs climbing stability of search and rescue robot[J]. International Journal of Advanced Robotic Systems, 2010, 7(4): 24-30.
[58] 郭晏, 宋爱国, 包加桐, 等. 基于差分进化支持向量机的移动机器人可通过度预测[J]. 机器人, 2011, 33(3): 258-272.
[59] 徐国政, 宋爱国, 李会军. 基于模糊逻辑的上肢康复机器人阻抗控制实验研究[J]. 机器人, 2010, 32(6): 792-798.
[60] Pan Lizheng, Song Aiguo, Xu Guozheng, et al. Hierarchical safety supervisory control strategy for robot-assisted rehabilitation exercise[J]. Robotica, 2013, 31(5): 757-766.
[61] Song Aiguo, Zeng Hong, Yang Renhuang, et al. Fundamental problems in rehabilitation robots based on neuro-machine interaction[J]. Instrumentation, 2014, 1(3): 1-12.
PDF(24449 KB)

Accesses

Citation

Detail

Sections
Recommended

/