Tracking the “Messenger” of the universe, challenging puzzle of the century: A brief introduction to the Large High Altitude Air Shower Observatory

ZHA Min, CHEN Songzhan, WU Hanrong, MA Lingling, MA Xinhua, HU Hongbo

Science & Technology Review ›› 2019, Vol. 37 ›› Issue (21) : 32-45.

PDF(3640 KB)
PDF(3640 KB)
Science & Technology Review ›› 2019, Vol. 37 ›› Issue (21) : 32-45. DOI: 10.3981/j.issn.1000-7857.2019.21.004
Exclusive: Large Experimental Equipment and Planning in Light, Cosmic Ray and Space Study

Tracking the “Messenger” of the universe, challenging puzzle of the century: A brief introduction to the Large High Altitude Air Shower Observatory

Author information -
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract

A lot of epoch-making discoveries have been revealed by the century long study of cosmic rays. However, issues related to the origin, acceleration and propagation of cosmic rays remain to be mysterious. The large high altitude air shower observatory (LHAASO) is a unique experiment having both advantages of high altitude and large effective area. Besides, LHAASO will greatly improve the discrimination power between gamma ray and cosmic rays by using the hybrid detector technology. LHAASO is expected to obtain unprecedented gamma ray detection sensitivity and to make very precise measurement in cosmic ray spectrum in a very wide energy range. LHAASO will make important contribution to understanding fundamental problem of cosmic ray, to the research in high-energy astrophysics, cosmology and the exploration of new physics. This paper briefly describes the concept and structure of LHAASO detectors, the advanced performance, and scientific goal of LHAASO.

Key words

cosmic rays / gamma rays / LHAASO

Cite this article

Download Citations
ZHA Min, CHEN Songzhan, WU Hanrong, MA Lingling, MA Xinhua, HU Hongbo. Tracking the “Messenger” of the universe, challenging puzzle of the century: A brief introduction to the Large High Altitude Air Shower Observatory[J]. Science & Technology Review, 2019, 37(21): 32-45 https://doi.org/10.3981/j.issn.1000-7857.2019.21.004

References

[1] Hess V F. Ber Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten[J]. Physikalischen Zeitschrift, 1912, 13:1084-1091.
[2] Amenomori M, Ayabe S, Bi X J, et al. The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-III AirShower Array[J]. The Astrophysical Journal, 2008, 678(2):1165.
[3] Bartoli B, Bernardini P, Bi X J, et al. Knee of the Cosmic Hydrogen and Helium Spectrum below 1 PeV Measured by ARGO-YBJ and a Cherenkov Telescope of LHAASO[J]. Physical Review D, 2015, 92(9):092005.
[4] Amenomori M, Ayabe S, Bi X J, et al. Anisotropy and corotation of galactic cosmic rays[J]. Science, 2006, 314(5798):439-443.
[5] Amenomori M, Ayabe S, Bi X J, et al. Northern sky Galactic Cosmic Ray anisotropy between 10-1000 TeV with the Tibet Air Shower Array[J]. The Astrophysical Journal, 2017, 836(2):153.
[6] Bartoli B, Bernardini P, Bi X J et al. TeV Gamma-ray survey of the northern sky using the ARGO-YBJ Detector[J]. The Astrophysical Journal, 2013, 779(1):27.
[7] He H H. For the LHAASO collaboration, design of the LHAASO detectors[J]. Radiation Detection Technology and Methods, 2018, 2:7.
[8] Cui S, Liu Y, Liu Y, et al. Simulation on gamma ray astronomy research with LHAASO-KM2A[J]. Astroparticle Physics, 2014, 54:86-92.
[9] Bernlöhr K, Barnacka A, Becherini Y, et al. Monte Carlo design studies for the Cherenkov Telescope Array[J]. Astroparticle Physics, 2013, 43:171-188.
[10] Acero F, Ackermann M, Ajello M, et al. Fermi Large Area Telescope third source catalog[J]. Astrophysical Journal Supplement Series, 2015, 218(2):23.
[11] Ackermann M, Ajello M, Atwood W B, et al. 2FHL:The second catalog of hard Fermi-LAT sources[J]. Astrophysical Journal Supplement Series, 2016, 222(1):5.
[12] TeVCat[EB/OL].[2018-07-30]. http://tevcat.uchicago.edu/.
[13] Ackermann M, Ajello M, Allafort A, et al. Detection of the characteristic pion-decay signature in supernova remnants[J]. Science, 2013, 339(6121):807-811.
[14] Yuan Q, Liu S M, Bi X J. An attempt at a unified model for the gamma-ray emission of supernova remnants[J]. The Astrophysical Journal, 2012, 761(2):133.
[15] Liu Y, Cao Z, Chen S, et al. Expectation on observation of supernova remnants with the LHAASO project[J]. The Astrophysical Journal, 2016, 826(1):63.
[16] Abramowski A, Aharonian F, Benkhali F A, et al. Acceleration of petaelectronvolt protons in the Galactic Centre[J]. Nature, 2016, 531(7595):476-479.
[17] Tavani M, Bulgarelli A, Vittorini V, et al. Discovery of powerful gamma-ray flares from the Crab Nebula[J]. Science, 2011, 331(6018):736-739.
[18] Abdo A A, Ackermann M, Ajello M, et al. Gamma-ray flares from the Crab Nebula[J]. Science, 2011, 331(6018):739-742.
[19] Abeysekara A U, Albert A, Alfaro R, et al. The 2HWC HAWC observatory gamma-ray catalog[J]. The Astrophysical Journal, 2017, 843(1):40.
[20] Band D, Matteson J, Ford L, et al. BATSE observations of gamma-ray burst spectra. I-Spectral diversity[J]. The Astrophysical Journal[J]. 1993, 413(1):281-292.
[21] Ackermann M, Asano K, Atwood W B, et al. Fermi observations of GRB 090510:A short-hard gamma-ray burst with an additional, hard power-law component from 10 keV to GeV energies[J]. The Astrophysical Journal, 2010, 716(2):1178-1190.
[22] Abdo A A, Ackermann M, Ajello M, et al. Fermi observations of GRB 090902B:A distinct spectral component in the prompt and delayed emission[J]. The Astrophysical Journal, 2009, 706(1):138-144.
[23] Ackermann M, Ajello M, Asano K, et al. Detection of a spectral break in the extra hard component of GRB 090926A[J]. The Astrophysical Journal, 2011, 729(2):114.
[24] Ackermann M, Ajello M, Asano K, et al. Fermi-LAT observations of the gamma-ray burst GRB 130427A[J]. Science, 2014, 343(6166):42-47.
[25] Bai BY, Zhang S S, Cao Z. Performance of SiPMs and pre-amplifier for the wide field of view Cherenkov telescope array of LHAASO[J]. Nuclear Instruments and Methods in Physics Research, 2018, 899:94-100.
[26] Zhang S S, Bi B Y, Wang C, et al. SiPM-Based camera design and development for the image air Cherenkov Telescope of LHAASO[C]//Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017, Singapore:Springer, Doi:https://doi.org/10.1007/978-981-13-1313-4_4.
[27] Bartoli B, Bernardini P, Bi X J, et al. Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO[J]. Physical Review D, 2015, 92(9):092005.
[28] Ma L L. Expectation on observation of cosmic rays energy spectrum from 10 PeV to 100 PeV with LHAASO experiment[C]//Proceeding of The 34th International Cosmic Ray Conference, 2017, Busan, Korea, Doi:https://doi.org/10.22323/1.301.0549.
[29] Chen T, Liu C, Gao Q, et al. Study on a wide field-ofview Cherenkov telescope with large dimensional refractive lens for high energy Cosmic Rays detection[C]//Proceeding of The 34th International Cosmic Ray Conference, 2017, Busan, Korea, Doi:https://doi.org/10.22323/1.301.0420.
[30] Bartoli B, Bernardini P, Bi X J, et al. Detection of thermal neutrons with the PRISMA-YBJ array in Extensive Air Showers selected by the ARGO-YBJ experiment[J]. Astroparticle Physics, 2016, 81:49-60.
[31] Fang K, Alvarez-Muniz J, Alves Batista R, et al. The giant radio array for neutrino detection (GRAND):Present and perspectives[C]//Proceeding of The 34th International Cosmic Ray Conference, 2017, Busan, Korea, Doi:https://doi.org/10.22323/1.301.0996.
PDF(3640 KB)

420

Accesses

0

Citation

Detail

Sections
Recommended

/