|
|
Dynamic model of COVID-19 transmission and assessment of control interventions based on causal analysis |
YOU Guangrong1, YOU Hanlin1, ZHAO Dezhi2, LIAN Zhenyu1 |
1. Center for Assessment and Demonstration Research, Academy of Military Science, Beijing 100091, China;
2. School of Graduate, Academy of Military Science, Beijing 100091, China |
|
|
Abstract: A modified SEIR model of single-population infectious disease (SEIRD) is proposed to investigate the transmission trend of coronavirus disease 2019 (COVID-19) in Chinese Mainland, whose outbreak originated in Wuhan, Hubei Province. The SEIRD model preforms well in fitting training data and can be used to predict the future transmission trend. The counterfactual inference is applied to assess the control interventions based on SEIRD model. Using the quantitative analysis results, the effect on COVID-19 transmission can be assessed systematically under the adjustable control interventions, such as delaying the Wuhan Lockdown. Finally, the conclusions are summarized:the assessment approach combining modeling & simulation and causal inference is applicable in the bidirectional deduction study of decision-making and implementation in major public health emergencies (MPHE), which contributes to improve the social governance capabilities handling with MPHE of the governments in each level.
|
Received: 18 March 2020
|
|
|
|
[1] 国家卫生健康委员会. 疫情防控动态[EB/OL]. (2020-03-26). http://www.nhc.gov.cn.
[2] 中华预防医学会新型冠状病毒肺炎防控专家组. 新型冠状病毒肺炎流行病学特征的最新认识[J]. 中华流行病学杂志, 2020, 41(2):139-144.
[3] 中国疾病预防控制中心新型冠状病毒肺炎应急响应机制流行病学组. 新型冠状病毒肺炎流行病学特征分析[J]. 中华流行病学杂志, 2020, 41(2):145-151.
[4] Yu W, Tang G, Zhang L, et.al. Decoding evolution and transmissions of novel pneumonia coronavirus using the whole genomic data[J]. ChinaXiv 2020, doi:10.12074/202002.00033.
[5] Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2[J]. National Science Review, 2020, doi:10.1093/nsr/nwaa036.
[6] Zhou P, Yang X, Wang X, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579:270-273.
[7] Anderson R M, Anderson B, May R M. Infectious diseases of humans:Dynamics and control[M]. Oxford:Oxford University Press, 1992.
[8] 范如国, 王奕博, 罗明, 等. 基于SEIR的新型肺炎传播模型及拐点预测分析[J]. 电子科技大学学报, 2020, doi:10.12178/1001-0548.2020029.
[9] 魏永越, 卢珍珍, 杜志成, 等. 基于改进的SEIR+CAQ传染病动力学模型进行新型冠状病毒肺炎疫情趋势分析[J]. 中华流行病学杂志, 2020, 41(4):470-475.
[10] Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3), 165-174. |
[1] |
LI Ningning, WU Hongzhen. The important role of the Internet of Things in epidemic prevention and control[J]. Science & Technology Review, 2020, 38(6): 115-119. |
[2] |
WANG Weiling, WU Zhigang, WANG Fang. Impact of epidemic prevention and control on digital government construction and policy recommendations[J]. Science & Technology Review, 2020, 38(6): 97-102. |
[3] |
YUAN Hongyong, LIANG Manchun, HUANG Quanyi, SU Guofeng, CHEN Tao, CHEN Jianguo, SUN Zhanhui, YANG Sihang, DENG Lizheng, LI Ke, QIN Zesheng, YU Miaomiao, CHENG Ming, LI Kaiyuan, LIU Gang, XIAO Xinxin, LI Wenzhang. Application of empirical data assimilation method in trend analysis of COVID-19[J]. Science & Technology Review, 2020, 38(6): 83-89. |
[4] |
ZHOU Dan, CHEN An. A comparative study of COVID-19 severity in different spatiotemporal scales[J]. Science & Technology Review, 2020, 38(6): 103-114. |
[5] |
CHEN An, LI Wenwen, HAN Wei. Analysis of the characteristics of risk communication of COVID-19 in the perspective of WeChat Contents[J]. Science & Technology Review, 2020, 38(6): 120-129. |
[6] |
SUN Yongsheng, JIN Wei, TANG Yuchao. Application of unmanned system in prevention and control of COVID-19[J]. Science & Technology Review, 2020, 38(4): 39-49. |
|
|
|
|