|
|
Seismic hazard mapping and earthquake disaster mitigation measures in the Belt and Road areas |
LI Changlong, JIANG Changsheng |
Institute of Geophysics, China Earthquake Administration, Beijing 100081 |
|
|
Abstract: The Belt and Road area is vast, with a wide distribution of active seismogenic structures and frequent earthquakes. The seismic hazard assessment and the seismic hazard mapping in this area are of great significance in the earthquake prevention of buildings and the disaster mitigation design of engineering facilities. This paper analyzes the seismogenic source area division model, the seismicity model, the ground motion attenuation relationship model and the site adjustment method in the Belt and Road area. The probabilistic seismic hazard calculation is carried out in the area, and the seismic hazard map of the peak ground acceleration (PGA) distribution with 10% probability of exceedance in 50 years is obtained, and the countermeasures for the earthquake prevention and the disaster mitigation in different seismic hazard areas are proposed. It is shown that the East and Southeast Asia, the western Pacific Ocean, the southern Central Asia, the eastern West Asia, the southern Europe and the eastern Africa are areas with a high seismic hazard in the Belt and Road regions. In the area with the PGA larger than 0.4 with 10% probability of exceedance in 50 years, the general civil buildings should be equipped with the capacity to resist a seismic intensity of 9 degrees.
|
Received: 13 December 2019
|
|
|
|
[1] Cornell C A. Engineering seismic risk analysis[J]. Bulletin of the Seismological Society of America, 1968, 58(5):1583-1606.
[2] Giardini D, Gruenthal G, Shedlock K M, et al. The GSHAP global seismic hazard map[J]. Annals of Geophysics, 1999, 42(6):1225-1230.
[3] Giardini D, Woessner J, Danciu L, et al. Mapping Europe's seismic hazard[J]. EOS, Transactions, American Geophysical Union, 2014, 95(29):261-268.
[4] Woessner J, Laurentiu D, Giardini D, et al. The 2013 European seismic hazard model:Key components and results[J]. Bulletin of Earthquake Engineering, 2015, 13(12):3553-3596.
[5] Schwarz C. Towards a Swiss national earthquake risk model:Sensitivity and gap analysis[R]. Delft:University of Technology, 2015.
[6] Silva V, Crowley H, Varum H, et al. Seismic hazard and risk assessment of Portugal[C]//Second European Conference on Earthquake Engineering and Seismology, Istanbul, Aug 25-29, 2014.
[7] Vanneste K, Vleminckx B, Verbeeck K, et al. Development of seismic hazard maps for Belgium[C]//Seismic Hazard Harmonization in Europe (SHARE):DGEB-Workshop, 2014.
[8] 李昌珑, 吴健, 徐伟进, 等. 全球地震模型(GEM)研究进展综述及应用前景展望[J]. 震灾防御技术, 2016, 11(3):582-591.
[9] 李善邦. 中国地震烈度区域划分图说明[J]. 地球物理学报, 1957, 6(2):127-158.
[10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中国地震动参数区划图[S]. 北京:中国国家标准化管理委员会, 2015.
[11] 地震调查研究推进本部, 地震调查委员会. 全国地震动预测地图2018年版[R]. 东京:地震调查研究推进本部事务局, 2018.
[12] Ullah S, Bindi D, Pilz M, et al. Probabilistic seismic hazard assessment for Central Asia[J]. Annal Geophysis, 2015, 58(1):0103S.
[13] Danciu L, Şeşetyan K, Demircioglu M, et al. The 2014 earthquake model of the middle east:Seismogenic sources[J]. Bulletin of Earthquake Engineering, 2018(16):3465-3496.
[14] 周本刚, 陈国星, 高战武, 等. 新地震区划图潜在震源区划分的主要技术特色[J]. 震灾防御技术, 2013, 8(2):113-124.
[15] Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(4):185-188.
[16] Zhang P Z, Deng Q D, Zhang G M, et al. Active tectonic blocks and strong earthquakes in continental China[J]. Science in China (Series D), 2003(46):13-24.
[17] Petersen M, Harmsen S, Mueller C, et al. Documentation for the Southeast Asia seismic hazard maps[R]. Reston:Geological Survey, 2007.
[18] Storchak D A, Di Giacomo D, Bondár I, et al. Public release of the ISC-GEM global instrumental earthquake catalogue (1900-2009)[J]. Seismological Research Letters, 2013, 84(5):810-815.
[19] Michael A J. How complete is the ISC-GEM global earthquake catalog[J]. Bulletin of the Seismological Society of America, 2014, 104(4):1829-1837.
[20] Cornell C A, Vanmarcke E H. The major influence on seismic risk[C]. Santiago:The Fourth World Conference on Earthquake Engineering, 1969.
[21] 俞言祥, 李山有, 肖亮. 为新区划图编制所建立的地震动衰减关系[J]. 震灾防御技术, 2013, 8(1):24-33.
[22] Akkar S, Bommer J J. Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East[J]. Seismological Research Letters, 2010, 81(2):195-206.
[23] Cauzzi C, Faccioli E. Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records[J]. Journal of Seismology, 2008, 12(4):453.
[24] Zhao J X, Zhang J, Asano A, et al. Attenuation relations of strong ground motion in Japan using site classification based on predominant period[J]. Bulletin of the Seismological Society of America, 2006, 96(3):898-913.
[25] Chiou B S J, Youngs R R. An NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthquake Spectra, 2008, 24(1):173-215.
[26] Bindi D, Pacor F, Luzi L, et al. Paolucci and published as "Ground motion prediction equations derived from the Italian strong motion data"[J]. Bulletin Earthquake Engineering, 2011, doi:10.1007/s10518-011-9313-z.
[27] Akkar S, Sandıkkaya M A, Bommer J J. Empirical ground-motion models for point-and extended-source crustal earthquake scenarios in Europe and the Middle East[J]. Bulletin of earthquake engineering, 2014, 12(1):359-387.
[28] Akkar S, Cagnan Z. A local ground-motion predictive model for Turkey, and its comparison with other regional and global ground-motion models[J]. Bulletin of the Seismological Society of America, 2010, 100(6):2978-2995.
[29] Youngs R R, Chiou S J, Silva W J, et al. Strong ground motion attenuation relationships for subduction zone earthquakes[J]. Seismological Research Letters, 1997, 68(1):58-73.
[30] Atkinson G M, Boore D M. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions[J]. Bulletin of the Seismological Society of America, 2003, 93(4):1703-1729.
[31] Lin P S, Lee C T. Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan[J]. Bulletin of the Seismological Society of America, 2008, 98(1):220-240.
[32] Esteva L. Seismic risk and seismic design decisions[M]//Seismic Design for Nuclear Power Plants. Cambridge:Massachusetts Institute of Technology Press, 1970:142-182.
[33] McGuire R K. Fortran computer program for seismic risk analysis[R]. Reston:Geological Survey, 1976:67-76.
[34] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑抗震设计规范[S]. 北京:中华人民共和国住房和城乡建设部, 2010.
[35] Pagani M, Monelli D, Weatherill G, et al. Openquake engine:An open hazard (and risk) software for the global earthquake model[J]. Seismological Research Letters, 2014, 85(3):692-702. |
[1] |
LIU Changjian. Improving the overseas port network and promoting the construction of the Belt and Road[J]. Science & Technology Review, 2020, 38(9): 89-96. |
[2] |
JIANG Tong, TAN Ke, WANG Yanjun, ZHAI Jianqing. Spatial-temporal variation of meteorological disasters in the “Belt and Road” regions[J]. Science & Technology Review, 2020, 38(8): 57-65. |
[3] |
CUI Peng, WU Shengnan, LEI Yu, ZHANG Zhengtao, ZOU Qiang. Disaster risk management pattern along the Belt and Road regions[J]. Science & Technology Review, 2020, 38(16): 35-44. |
[4] |
YANG Dongdong, QIU Haijun, HU Sheng, ZOU Qiang, ZHU Yaru. Temporal and spatial distributions of geo-hazards along the Belt and Road and policy recommendations for disaster prevention[J]. Science & Technology Review, 2020, 38(16): 45-52. |
[5] |
SONG Zhouying, YU Yang, LIU Hui, LIU Weidong. The cooperation mechanism of cross-border natural disaster prevention and mitigation[J]. Science & Technology Review, 2020, 38(16): 88-95. |
[6] |
WANG Juanle, ZHANG Min, YUAN Yuelei, WANG Yujie, BU Kun, YANG Fei, LIANG Xiya, HAN Xuehua. Knowledge services drive disaster risk reduction in the Belt and Road initiative[J]. Science & Technology Review, 2020, 38(16): 96-104. |
|
|
|
|