|
|
Application of rare earth in catalytic purification technology for volatile organic compounds |
REN Quanming1, FAN Jie1, FU Mingli1,2,3, XIONG Juxia1, ZHANG Mingyuan1, YE Daiqi1,2,3 |
1. School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;
2. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China;
3. National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China |
|
|
Abstract: The rare earth is widely used in in the field of the catalytic purification of the volatile organic compounds (VOCs) due to its unique chemical properties. This paper reviews the research progress of the reaction mechanism and the application of the rare earth materials in the catalytic purification of volatile organic compounds. According to the actual situation of the VOCs treatment in China, the existing issues are discussed and the counter measures are put forward, for predicting the development of the rare earth materials in the VOCs catalytic purification field.
|
Received: 07 September 2020
|
|
|
|
[1] Zhan W C, Guo Y, Gong X Q, et al.Current status and perspectives of rare earth catalytic materials and catalysis[J].Chinese Journal of Catalysis, 2014, 35(8):1238-1250.
[2] 叶代启,刘锐源,田俊泰.我国挥发性有机物排放量变化趋势及政策研究[J].环境保护, 2020, 48(15):23-26.
[3] Liu L Z, Li J X, Zhang H B, et al.In situ fabrication of highly active γ-MnO2/SmMnO3 catalyst for deep catalytic oxidation of gaseous benzene, ethylbenzene, toluene, and o-xylene[J].Journal of Hazardous Materials, 2019, 362:178-186.
[4] Huang H B, Xu Y, Feng Q Y, et al.Low temperature catalytic oxidation of volatile organic compounds:A review[J].Catalysis Science & Technology, 2015, 5(5):2649-2669.
[5] Heynderickx M P, Thybaut J W, Poelman H, et al.Kinetic modeling of the total oxidation of propane over CuOCeO 2/γ-Al2O3[J].Applied Catalysis B:Environmental, 2010, 95(1/2):26-38.
[6] Qiu Y N, Ye N, Situ D N, et al.Study of catalytic combustion of chlorobenzene and temperature programmed reactions over CrCeO x/AlFe pillared clay catalysts[J].Materials, 2019, 12(5):728.
[7] Dou B J, Li S M, Liu D L, et al.Catalytic oxidation of ethyl acetate and toluene over Cu-Ce-Zr supported ZSM-5/TiO 2 catalysts[J].RSC Advances, 2016, 6(59):53852-53859.
[8] Carabineiro S A C, Chen X, Konsolakis M, et al.Catalytic oxidation of toluene on Ce-Co and La-Co mixed oxides synthesized by exotemplating and evaporation methods[J].Catalysis Today, 2015, 244:161-171.
[9] Gómez D M, Galvita V V, Gatica J M, et al.TAP study of toluene total oxidation over a Co 3O4/La-CeO2 catalyst with an application as a washcoat of cordierite honeycomb monoliths[J].Physical Chemistry Chemical Physics, 2014, 16(23):11447-11455.
[10] Jiang Z Y, Jing M Z, Feng X B, et al.Stabilizing platinum atoms on CeO2 oxygen vacancies by metal-support interaction induced interface distortion:Mechanism and application[J].Applied Catalysis B:Environmental, 2020, 278:119304.
[11] Xia S J, Zhang G H, Meng Y, et al.Kinetic and mechanistic analysis for the photodegradation of gaseous formaldehyde by core-shell CeO2@LDHs[J].Applied Catalysis B:Environmental, 2020, 278:119266.
[12] Zhu X B, Zhang S, Yang Y, et al.Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La 1-xCexCoO3+δ catalysts[J].Applied Catalysis B:Environmental, 2017, 213:97-105.
[13] Wang X Q, Wu J L, Wang J L, et al.Methanol plasmacatalytic oxidation over CeO2 catalysts:Effect of ceria morphology and reaction mechanism[J].Chemical Engineering Journal, 2019, 369:233-244.
[14] Guo Y L, Gao Y J Li X, et al.Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2[J].Chemical Engineering Journal, 2019, 362:41-52.
[15] Qiu K Q, Yang L X, Lin J M, et al.Historical industrial emissions of non-methane volatile organic compounds in China for the period of 1980-2010[J].Atmospheric Environment, 2014, 86:102-112.
[16] Trovarelli A, Llorca J.Ceria catalysts at nanoscale:How do crystal shapes shape catalysis?[J].ACS Catalysis, 2017, 7(7):4716-4735.
[17] Feng Z T, Ren Q M, Peng R S, et al.Effect of CeO2 morphologies on toluene catalytic combustion[J].Catalysis Today, 2019, 332:177-182.
[18] Akram S, Wang Z, Chen L, et al.Low-temperature efficient degradation of ethyl acetate catalyzed by latticedoped CeO2-CoOx nanocomposites[J].Catalysis Communications, 2016, 73:123-127.
[19] Li H J, Qi G, Zhang X, et al.Low-temperature oxidation of ethanol over a Mn 0.6Ce0.4O2 mixed oxide[J].Applied Catalysis B:Environmental, 2011, 103(1/2):54-61.
[20] Huang Y C, Li H B, Balogun M S, et al.Three-dimensional TiO 2/CeO2 nanowire composite for efficient formaldehyde oxidation at low temperature[J].RSC Advances, 2015, 5(10):7729-7733.
[21] Peng R S, Sun X B, Li S J, et al.Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J].Chemical Engineering Journal, 2016, 306:1234-1246.
[22] Peng R S, Li S J, Sun X B, et al.Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J].Applied Catalysis B:Environmental, 2018, 220:462-470.
[23] Alifanti M, Florea M, Pârvulescu V.Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC[J].Applied Catalysis B:Environmental, 2007, 70(1/2/3/4):400-405.
[24] Zhang C H, Wang C, Gil S, et al.Catalytic oxidation of 1,2-dichloropropane over supported LaMnO oxides catalysts[J].Applied Catalysis B:Environmental, 2017, 201:552-560.
[25] Álvarez-Galván M C, de la Peña O'Shea V A, Arzamendi G, et al.Methyl ethyl ketone combustion over Latransition metal (Cr, Co, Ni, Mn) perovskites[J].Applied Catalysis B:Environmental, 2009, 92(3/4):445-453.
[26] Li J J, Yu E Q, Cai S C, et al.Noble metal free, CeO2/LaMnO 3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light[J].Applied Catalysis B:Environmental, 2019, 240:141-152.
[27] Jing Y, Cai Z X, Liu C, et al.Promotional effect of La in the three-way catalysis of La-loaded Al2O3-supported Pd catalysts (Pd/La/Al2O3)[J].ACS Catalysis, 2019, 10(2):1010-1023.
[28] Wang T, Zhou R X.Oxygen mobility and microstructure properties-redox performance relationship of Rh/(Ce, Zr, La) O2 catalysts[J].Environmental Pollution, 2020, 258:113782.
[29] Liu J, Wang T, Cheng J, et al.Distribution of organic compounds in coal-fired power plant emissions[J].Energy & Fuels, 2019, 33(6):5430-5437.
[30] Chen L, Liao Y F, Xin S R, et al.Simultaneous removal of NO and volatile organic compounds (VOCs) by Ce/Mo doping-modified selective catalytic reduction (SCR) catalysts in denitrification zone of coal-fired flue gas[J].Fuel, 2020, 262:116485.
[31] Lu C Q, Deng R R, Xu R D, et al.Design of hybrid oxygen carriers with CeO2 particles on MnCo2O4 microspheres for chemical looping combustion[J].Chemical Engineering Journal, 2021, 404:126554.
[32] Zhang X Y, House S D, Tang Y, et al.Complete oxidation of methane on NiO nanoclusters supported on CeO2 nanorods through synergistic effect[J].ACS Sustainable Chemistry & Engineering, 2018, 6(5):6467-6477.
[33] de Rivas B, López-Fonseca R, González-Velasco J R, et al.On the mechanism of the catalytic destruction of 1, 2-dichloroethane over Ce/Zr mixed oxide catalysts[J].Journal of Molecular Catalysis A:Chemical, 2007, 278(1/2):181-188.
[34] 许子飏,莫胜鹏,付名利,等.稀土材料在挥发性有机废气降解中的应用及发展趋势[J].环境工程, 2020, 38(1):1-12. |
[1] |
CHEN Wei, WANG Peng, ZHAO Shen, CHEN Weiqiang. Material flow analysis of rare earth elements: A comprehensive review[J]. Science & Technology Review, 2022, 40(8): 14-26. |
[2] |
WANG Lu, WANG Peng, WANG Qiaochu, LIU Ying, ZHANG Biao, CHEN Weiqiang. Global distribution and development potential of rare earth resources[J]. Science & Technology Review, 2022, 40(8): 27-39. |
[3] |
TANG Linbin, WANG Peng, MA Zijie, CHEN Weiqiang. Evolution of the global trade networks of critical rare earth products and its implications[J]. Science & Technology Review, 2022, 40(8): 40-49. |
[4] |
WANG Chenyang, WANG Peng, TANG Linbin, CHEN Wei, CHEN Weiqiang. Forecast of rare earth demand driven by electric vehicle industry in China: 2010-2060[J]. Science & Technology Review, 2022, 40(8): 50-61. |
[5] |
HUANG Qishen, SUN Ying, WANG Peng, WANG Lu, CHEN Weiqiang. Comparison of American, Australian, and Chinese environmental regulations in the rare earth industry and implications for global sustainable development[J]. Science & Technology Review, 2022, 40(8): 78-90. |
[6] |
GAO Yuanfeng, BAO Chuanlei, XU Zhenkun, ZHENG Ziqiang, WU Songhua. Effect of metal oxide on the heat resistance property of RTV fluorosilicone sealant[J]. Science & Technology Review, 2021, 39(9): 56-60. |
|
|
|
|