Articles

Development of Dynamic Simulation Test Device for the Corrosion Near Downhole Pump Suction Port

  • GAO Fei ,
  • LOU Yishan ,
  • WU Qiong ,
  • TANG Lihua ,
  • MIN Jiangben ,
  • LI Yihao ,
  • JIANG Meiting
Expand
  • 1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, MOE, Yangtze University; Department of Petroleum Engineering, Yangtze University, Wuhan 434023, China;
    2. Research Institute of Exploration and Development, Henan Oilfield Company, Sinopec,Nanyang 473132, Henan Province, China;
    3. Engineering and Technology Institute, Jiangsu Oilfield Company,Sinopec,Yangzhou 225008,Jiangsu Province,China

Received date: 2013-07-09

  Revised date: 2013-08-23

  Online published: 2014-01-15

Abstract

The corrosion of the casing near a downhole pump suction port is common in some domestic oilfields, and it has a serious impact on the stable production of the oilfield. In order to study the corrosion mechanism, we have designed and manufactured a dynamic simulation test device for the corrosion of the casing near the downhole pump suction port. The device consists of a single plunger pump and a tube and casing strings in line with the site structure to simulate the intermittent production mode of the pump as well as the fluid flow state near the pump inlet adequately, and the corrosion velocity measurement can be made and the corrosion behavior can be studied under different temperatures, CO2 partial pressures, and velocities to provide important data for the casing materials. The test results show that the flow rate and flow pattern of the corrosive medium near the oil pump suction port are the main factors of casing-leakage, and CO2 local corrosion is the main way, which is in accordance with the casing damage status.

Cite this article

GAO Fei , LOU Yishan , WU Qiong , TANG Lihua , MIN Jiangben , LI Yihao , JIANG Meiting . Development of Dynamic Simulation Test Device for the Corrosion Near Downhole Pump Suction Port[J]. Science & Technology Review, 2013 , 31(36) : 46 -49 . DOI: 10.3981/j.issn.1000-7857.2013.36.007

References

[1] 秦永妮, 李春福, 尤郭群. 高温高压下CO2对N80钢的腐蚀实验研究[J]. 全面腐蚀控制, 2008, 22(6): 19-21. Qin Yongni, Li Chunfu, You Guoqun. Total Corrosion Control, 2008, 22 (6): 19-21.
[2] 李珣, 姜放, 陈文梅, 等. 高温高压下N80的CO2腐蚀[J]. 天然气与石油, 2006, 24(6): 21-23. Li Xun, Jiang Fang, Chen Wenmei, et al. Natural Gas and Oil, 2006, 24 (6): 21-23.
[3] 陈尧, 白真权, 熊惠. N80钢在高温高压下的抗CO2腐蚀性能[J]. 石油与天然气化工, 2006, 35(6): 470-472. Chen Yao, Bai Zhenquan, Xiong Hui. Chemical Engineering of Oil & Gas, 2006, 35(6): 470-472.
[4] 周建龙, 李晓刚, 程学群, 等. 新型环烷酸腐蚀动态模拟试验装置的研制[J]. 材料保护, 2010, 43(2): 53-56. Zhou Jianlong, Li Xiaogang, Cheng Xuequn, et al. Materials Protection, 2010, 43(2): 53-56.
[5] 梁明华, 赵国仙, 冯耀荣, 等. KO110与3Cr110钢的CO2腐蚀实验对比研究[J]. 腐蚀与防护, 2005, 26(6): 240-243. Liang Minghua, Zhao Guoxian, Feng Yaorong, et al. Corrosion & Protec-tion, 2005, 26(6): 240-243.
[6] 郭少强, 许立宁, 常炜, 等. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47(8): 1067-1074. Guo Shaoqiang, Xu Lining, Chang Wei, et al. Acta Metallurgica Sinica, 2011, 47(8): 1067-1074.
[7] 林玉珍, 雍兴跃, 徐瑞芬. 动态腐蚀模拟实验装置的研制[J]. 全面腐蚀控制, 1995, 9(2): 7-10. Lin Yuzhen, Yong Xingyue, Xu Ruifen. Total Corrosion Control, 1995, 9 (2): 7-10.
[8] 李珣, 姜放, 陈文梅, 等. 井下油套管二氧化碳腐蚀[J]. 石油与天然气化工, 2006, 35(4): 300-303. Li Xun, Jiang Fang, Chen Wenmei, et al. Chemical Engineering of Oil & Gas, 2006, 35(4): 300-303.
[9] 郑玉贵, 姚治铭, 龙康, 等. 液/固双相流冲刷腐蚀实验装置的研制及动态电化学测试[J]. 腐蚀科学与防护, 1993, 5(4): 286-290. Zheng Yugui, Yao Zhiming, Long Kang, et al. Corrosion Science and Pro-tection Technology, 1993, 5(4): 286-290.
[10] 郑玉贵, 阎永贵, 龙康, 等. 双相流冲刷腐蚀激光多普勒测试装置及其校正[J]. 中国腐蚀与防护学报, 1999, 19(5): 301-305. Zheng Yugui, Yan Yonggui, Long Kang, et al. Journal of Chinese Society for Corrosion and Protection, 1999, 19(5): 301-305.
[11] 姜胜利, 郑玉贵, 乔岩欣, 等. 高速喷射式冲刷腐蚀实验装置的研制及其实时动态电化学测试[J]. 腐蚀科学与防护, 2009, 21(5): 489-491. Jiang Shengli, Zheng Yugui, Qiao Yanxin, et al. Corrosion Science and Protection Technology, 2009, 21(5): 489-491.
[12] 郑玉贵, 姚治铭, 柯伟. 冲刷腐蚀的研究近况[J]. 材料科学与工程, 1992, 10(3): 21-26. Zheng Yugui, Yao Zhiming, Ke Wei. Materials Science and Engineering of Powder Metallurgy, 1992, 10(3): 21-26.
[13] Heitz E. Investigation of hydrodynamic test systems for the selection of high flow rate resistant materials[J]. Journal of Applied Electrochemistry, 1979, 9(2): 243-253.
[14] Dean S W. Velocity-accelerated corrosion testing and prediction[J]. Materials Performance, 1990, 29(9): 61-67.
[15] Chen T Y, Moccari A A. Development of controlled hydrodynamic techniques for corrosion testing[J]. Corrosion, 1992, 48(3): 239-255.
[16] 赵景茂, 顾明广, 左禹. 碳钢在二氧化碳溶液中腐蚀影响因素的研究[J]. 北京化工大学学报, 2005, 32(5): 71-74. Zhao Jingmao, Gu Mingguang, Zuo Yu. Journal of Beijing University of Chemical Technology, 2005, 32(5): 71-74.
[17] 万里平, 孟英峰, 梁发书. 油气田开发中的二氧化碳腐蚀及影响因素[J]. 全面腐蚀控制, 2003, 17(2): 14-17. Wan Liping, Meng Yingfeng, Liang Fashu. Total Corrosion Control, 2003, 17(2): 14-17.
[18] 龙凤乐, 郑文军, 陈长风, 等. 温度、CO2分压、流速、pH值对X65管线钢CO2 均匀腐蚀速率的影响规律[J]. 腐蚀与防护, 2005, 26(7): 290-293. Long Fengle, Zheng Wenjun, Chen Changfeng, et al. Corrosion & Protec-tion, 2005, 26(7): 290-293.
[19] 张学元, 邸超, 雷良才. 二氧化碳腐蚀与控制[M]. 北京: 化学工业出版社, 2000. Zhang Xueyuan, Di Chao, Lei Liangcai. Corrosion and control of carbon dioxide[M]. Beijing: Chemical Industry Press, 2000.
[20] 赵章明. 油气井腐蚀防护与材质选择指南[M]. 北京: 石油工业出版社, 2011. Zhao Zhangming. Corrosion protection of oil and gas wells and material selection guide[M]. Beijing: Petroleum Industry Press, 2011.
Outlines

/