Reviews

Advances in On-line Detecting Technologies of Chemical Oxygen Demand, Biochemical Oxygen Demand and Toxicity in Water

  • HAN Yanhe ,
  • CHEN Jiaqing ,
  • WANG Peng ,
  • RUAN Xiuli
Expand
  • 1. Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;
    2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China

Received date: 2013-07-02

  Revised date: 2013-08-02

  Online published: 2014-01-15

Abstract

The chemical oxygen demand (COD), the biochemical oxygen demand (BOD) and the toxicity, which play very important roles in the detection of contamination, the analysis of the wastewater treatment plant, and the water quality assessment, are important indexes for representing the degree of the organic pollution in water bodies. The on-line detecting technology is a promising research area. The conventional determination methods of the COD make use of the consumption of the chemical oxidant as the quantitative basis. The BOD is measured through the dissolved oxygen consumption during the biological degradation as the basis in a conventional method. The conventional toxicity detection is carried out by using the variation of the biomass or the number of individuals as the basis. Therefore, the detecting integration of the COD, the BOD and the toxicity is hard to be made based on these conventional determination methods. The merits and demerits of testing technologies for the COD, the BOD, the toxicity and their integration are reviewed in this paper. An unconventional quantitative method is proposed to realize the integrating detection of the COD, the BOD and the toxicity, as an advance in on-line detecting technologies of the COD, the BOD and the toxicity.

Cite this article

HAN Yanhe , CHEN Jiaqing , WANG Peng , RUAN Xiuli . Advances in On-line Detecting Technologies of Chemical Oxygen Demand, Biochemical Oxygen Demand and Toxicity in Water[J]. Science & Technology Review, 2013 , 31(36) : 76 -79 . DOI: 10.3981/j.issn.1000-7857.2013.36.013

References

[1] Mu Q H, Li Y G, Zhang Q H, et al. TiO2 nanofibers fixed in a microfluidic device for rapid determination of chemical oxygen demand via photoelec-trocatalysis[J]. Sensors and Actuators, B: Chemical, 2011, 155(2): 804-809.
[2] Chen J S, Zhang L S, Wang J L. A novel biosensor for the rapid determination of biochemical oxygen demand[J]. Biomedical and Environmental Sciences, 2007, 20(1): 78-83.
[3] 赵红宁, 王学江, 夏四清. 水生生态毒理学方法在废水毒性评价中的应用[J]. 净水技术, 2008, 27(5): 18-24. Zhao Hongning, Wang Xuejiang, Xia Siqing. Water Purification Technolo-gy, 2008, 27(5): 18-24.
[4] Modin O, Wilen B M. A novel bioelectrochemical BOD sensor operating with voltage input[J]. Water Research, 2012, 46(18): 6113-6120.
[5] Kibena E, Raud M, Jogi E, et al. Semi-specific Microbacterium phyllosphaerae-based microbial sensor for biochemical oxygen demand measure ments in dairy wastewater[J]. Environmental Science Pollution Research, 2013, 20(4): 2492-2498.
[6] Zhang Y F, Angelidaki I. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater-Focusing on impact of anodic biofilm on sensor applicability[J]. Biotechnology and Bioengineering, 2011, 108(10): 2339-2347.
[7] Dharmadhikari D M, Vanerkar A P, Barhate N M. Chemical oxygen demand using closed microwave digestion system[J]. Environmental Science and Technology, 2005, 39(16): 6198-6201.
[8] Li J, Tao T, Li X B, et al. A spectrophotometric method for determination of chemical oxygen demand using home-made reagents[J]. Desalination, 2009, 239(1): 139-145.
[9] Domini C E, Vidal L, Canals A. Trivalent manganese as an environmentally friendly oxidizing reagent for microwave-and ultrasound-assisted chemical oxygen demand determination[J]. Ultrasonics Sonochemistry, 2009, 16(5): 686-691.
[10] Dan D, Dou F, Xiu D. Chemical oxygen demand determination in environmental waters by mixed-acid digestion and single sweep polarography[J]. Analytica Chimica Acta, 2000, 420(1): 39-44.
[11] Cuesta A, Todolí J L, Mora J. Rapid determination of chemical oxygen demand by a semi-automated method based on microwave sample digestion, chromium(VI) organic solvent extraction and flame atomic absorptionspectrometry[J].AnalyticaChimicaActa, 1998, 372(3):399-409.
[12] Yu H, Ma C, Quan X, et al. Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode[J]. Environmental Science and Technology, 2009, 43(6): 1935-1939.
[13] Zhang A Y, Zhou M H, Zhou Q X. A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent[J]. Analytica Chimica Acta, 2011, 686(1-2): 133-143.
[14] 丁红春, 柴怡浩, 张中海, 等. 光催化氧化法测定地表水化学需氧量的研究[J]. 化学学报, 2005, 63(2):148-152. Ding Hongchun, Chai Yihao, Zhang Zhonghai, et al. Acta Chimica Sinica, 2005, 63(2):148-152.
[15] Qiu J, Zhang S, Zhao H. Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 875-890.
[16] Zheng Q, Zhou B X, Bai J, et al. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand[J]. Advanced Material, 2008, 20(5): 1044-1049.
[17] Han Y, Zhang S, Zhao H, et al. Photoelectrochemical characterization of a robust TiO2/BDD heterojunction electrode for sensing application in aqueous solutions[J]. Langmuir, 2010, 26(8): 6033-6040.
[18] Han Y, Qiu J, Miao Y, et al. TiO2/BDD heterojunction photoanodes for determination of chemical oxygen demand in wastewaters[J]. Analytical Methods, 2011, 3(9): 2003-2009.
[19] Karube I, Matsunaga T, Mitsuda S, et al. Microbial electrode BOD sensors[J]. Biotechnology and Bioengineering, 1977, 19(10): 1535-1547.
[20] Pang H L, Kwok N Y, Chan P H, et al. High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor[J]. Environmental Science and Technology, 2007, 41(11): 4038-4044.
[21] Chen H, Ye T, Qiu B, et al. A novel approach based on ferricyanidemediator immobilized in an ion-exchangeable biosensing film for the determination of biochemical oxygen demand[J]. Analytica Chimica Acta, 2008, 612(1): 75-82.
[22] Trosok S P, Driscoll B T, Luong J H T. Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement[J]. Applied Microbiology and Biotechnology, 2001, 56(3-4): 550-554.
[23] 张悦, 王建龙, 李花子, 等. 生物传感器快速测定BOD在海洋检测中的应用[J]. 海洋环境科学, 2001, 20(1): 50-54. Zhang Yue, Wang Jianlong, Li Huazi, et al. Marine Environmental Science, 2001, 20(1): 50-54.
[24] 刘长宇, 屈建莹, 郏建波, 等. 有机-无机杂化材料膜制备生物传感器用于在线生化需氧量的测定[J]. 分析化学, 2005, 33(5): 609-613. Liu Changyu, Qu Jianying, Jia Jianbo, et al. Chinese Journal of Analytical Chemistry, 2005, 33(5): 609-613.
[25] 佟萌, 杜竹玮, 李顶杰, 等. 微生物燃料电池型传感器在BOD检测中的应用进展[J]. 环境检测管理与技术, 2008, 20(6): 7-12. Tong Meng, Du Zhuwei, Li Dingjie, et al. The Administration and Technique of Environmental Monitoring, 2008, 20(6): 7-12.
[26] Mohan S V, Saravanan R, Raghavulu S V, et al. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte[J]. Bioresource Technology, 2008, 99(3): 596-603.
[27] 郭敬慈, 吴同华, 郭虹, 等. 一种全自动在线化学耗氧量和生物耗氧量的监测仪及其使用方法[P]: 中国, 101625317A, 2010-01-13. Guo Jingci, Wu Tonghua, Guo Hong, et al. Full-automatic online chemical oxygen demand (COD) and biological oxygen demand (BOD) monitor for wastewater and application method thereof[P]. CN, 101625317A, 2010-01-13.
[28] 郭敬慈. 重铬酸钾紫外曝气法快速测定化学耗氧量和生物耗氧量[P]: 中国, 1267825A, 2000-09-27. Guo Jingci. Method for rapid determination of COD and BOD by UV spectrometry and potassium dichromate[P]. CN, 1267825A, 2000-09-27.
[29] 刘长宇, 董绍俊, 赵惠军.一种生化需氧量的检测方法[P]: 中国, CN102735812A, 2012-10-17. Liu Changyu, Dong Shaojun, Zhao Huijun. Biochemical oxygen demand detection method[P]. CN, 102735812A, 2012-10-17.
[30] Hernando M D, Malato F. Application of ring study: Water toxicity determinations by bioluminescence assay with Vibrio fischeri[J]. Talanta, 2006, 69(2): 370-376.
[31] Giancarlo S, Benedetta B, Fabio C, et al. Surface and ground waters characterization in Tuscany (Italy) by using algal bioassay and pesticide determinations: comparative evaluation of the results and hazard assessment of the pesticides impact on primary productivity[J]. Chemosphere, 2005, 58(5): 571-578.
[32] Zhou X F, Sang W J, Liu S S, et al. Modeling and prediction for the acute toxicity of pesticide mixtures to the freshwater luminescent bacterium Vibrio qinghaiensis sp-Q67[J]. Journal of Environmental Sciences, 2010, 22(3): 433-440.
[33] 孙平, 张逢春, 张影. 蛋白质芯片技术的研究及应用现状[J]. 北华大学学报: 自然科学版, 2009, 10(2): 115-119. Sun Ping, Zhang Fengchun, Zhang Ying. Journal of Beihua University: Natural Science, 2009, 10(2): 115-119.
[34] Trang P T, Berg M, Viet P H, et al. Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples[J]. Environmental Science and Technology, 2005, 39(19): 7625-7630.
[35] Castillo J, Gaspar S, Leth S, et al. Biosensors for lefe quality: design, development and application[J]. Sensors and Actuators B: Chemical, 2004, 102(2): 179-194.
[36] Mia K, Hyun MS, Geoffrey M, et al. A novel biomonitoring system using microbial fuel cells[J]. Journal of Environmental Monitoring, 2007, 9 (12): 1323-1328.
[37] 吴锋, 刘志, 周奔, 等. 单室MFC型生物毒性传感器对重金属离子的检测研究[J]. 环境科学, 2010, 31(1): 1596-1600. Wu Feng, Liu Zhi, Zhou Ben, et al. Chinese Journal of Environmental Science, 2010, 31(1): 1596-1600.
Outlines

/