[1] Mu Q H, Li Y G, Zhang Q H, et al. TiO2 nanofibers fixed in a microfluidic device for rapid determination of chemical oxygen demand via photoelec-trocatalysis[J]. Sensors and Actuators, B: Chemical, 2011, 155(2): 804-809.
[2] Chen J S, Zhang L S, Wang J L. A novel biosensor for the rapid determination of biochemical oxygen demand[J]. Biomedical and Environmental Sciences, 2007, 20(1): 78-83.
[3] 赵红宁, 王学江, 夏四清. 水生生态毒理学方法在废水毒性评价中的应用[J]. 净水技术, 2008, 27(5): 18-24. Zhao Hongning, Wang Xuejiang, Xia Siqing. Water Purification Technolo-gy, 2008, 27(5): 18-24.
[4] Modin O, Wilen B M. A novel bioelectrochemical BOD sensor operating with voltage input[J]. Water Research, 2012, 46(18): 6113-6120.
[5] Kibena E, Raud M, Jogi E, et al. Semi-specific Microbacterium phyllosphaerae-based microbial sensor for biochemical oxygen demand measure ments in dairy wastewater[J]. Environmental Science Pollution Research, 2013, 20(4): 2492-2498.
[6] Zhang Y F, Angelidaki I. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater-Focusing on impact of anodic biofilm on sensor applicability[J]. Biotechnology and Bioengineering, 2011, 108(10): 2339-2347.
[7] Dharmadhikari D M, Vanerkar A P, Barhate N M. Chemical oxygen demand using closed microwave digestion system[J]. Environmental Science and Technology, 2005, 39(16): 6198-6201.
[8] Li J, Tao T, Li X B, et al. A spectrophotometric method for determination of chemical oxygen demand using home-made reagents[J]. Desalination, 2009, 239(1): 139-145.
[9] Domini C E, Vidal L, Canals A. Trivalent manganese as an environmentally friendly oxidizing reagent for microwave-and ultrasound-assisted chemical oxygen demand determination[J]. Ultrasonics Sonochemistry, 2009, 16(5): 686-691.
[10] Dan D, Dou F, Xiu D. Chemical oxygen demand determination in environmental waters by mixed-acid digestion and single sweep polarography[J]. Analytica Chimica Acta, 2000, 420(1): 39-44.
[11] Cuesta A, Todolí J L, Mora J. Rapid determination of chemical oxygen demand by a semi-automated method based on microwave sample digestion, chromium(VI) organic solvent extraction and flame atomic absorptionspectrometry[J].AnalyticaChimicaActa, 1998, 372(3):399-409.
[12] Yu H, Ma C, Quan X, et al. Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode[J]. Environmental Science and Technology, 2009, 43(6): 1935-1939.
[13] Zhang A Y, Zhou M H, Zhou Q X. A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent[J]. Analytica Chimica Acta, 2011, 686(1-2): 133-143.
[14] 丁红春, 柴怡浩, 张中海, 等. 光催化氧化法测定地表水化学需氧量的研究[J]. 化学学报, 2005, 63(2):148-152. Ding Hongchun, Chai Yihao, Zhang Zhonghai, et al. Acta Chimica Sinica, 2005, 63(2):148-152.
[15] Qiu J, Zhang S, Zhao H. Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 875-890.
[16] Zheng Q, Zhou B X, Bai J, et al. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand[J]. Advanced Material, 2008, 20(5): 1044-1049.
[17] Han Y, Zhang S, Zhao H, et al. Photoelectrochemical characterization of a robust TiO2/BDD heterojunction electrode for sensing application in aqueous solutions[J]. Langmuir, 2010, 26(8): 6033-6040.
[18] Han Y, Qiu J, Miao Y, et al. TiO2/BDD heterojunction photoanodes for determination of chemical oxygen demand in wastewaters[J]. Analytical Methods, 2011, 3(9): 2003-2009.
[19] Karube I, Matsunaga T, Mitsuda S, et al. Microbial electrode BOD sensors[J]. Biotechnology and Bioengineering, 1977, 19(10): 1535-1547.
[20] Pang H L, Kwok N Y, Chan P H, et al. High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor[J]. Environmental Science and Technology, 2007, 41(11): 4038-4044.
[21] Chen H, Ye T, Qiu B, et al. A novel approach based on ferricyanidemediator immobilized in an ion-exchangeable biosensing film for the determination of biochemical oxygen demand[J]. Analytica Chimica Acta, 2008, 612(1): 75-82.
[22] Trosok S P, Driscoll B T, Luong J H T. Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement[J]. Applied Microbiology and Biotechnology, 2001, 56(3-4): 550-554.
[23] 张悦, 王建龙, 李花子, 等. 生物传感器快速测定BOD在海洋检测中的应用[J]. 海洋环境科学, 2001, 20(1): 50-54. Zhang Yue, Wang Jianlong, Li Huazi, et al. Marine Environmental Science, 2001, 20(1): 50-54.
[24] 刘长宇, 屈建莹, 郏建波, 等. 有机-无机杂化材料膜制备生物传感器用于在线生化需氧量的测定[J]. 分析化学, 2005, 33(5): 609-613. Liu Changyu, Qu Jianying, Jia Jianbo, et al. Chinese Journal of Analytical Chemistry, 2005, 33(5): 609-613.
[25] 佟萌, 杜竹玮, 李顶杰, 等. 微生物燃料电池型传感器在BOD检测中的应用进展[J]. 环境检测管理与技术, 2008, 20(6): 7-12. Tong Meng, Du Zhuwei, Li Dingjie, et al. The Administration and Technique of Environmental Monitoring, 2008, 20(6): 7-12.
[26] Mohan S V, Saravanan R, Raghavulu S V, et al. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte[J]. Bioresource Technology, 2008, 99(3): 596-603.
[27] 郭敬慈, 吴同华, 郭虹, 等. 一种全自动在线化学耗氧量和生物耗氧量的监测仪及其使用方法[P]: 中国, 101625317A, 2010-01-13. Guo Jingci, Wu Tonghua, Guo Hong, et al. Full-automatic online chemical oxygen demand (COD) and biological oxygen demand (BOD) monitor for wastewater and application method thereof[P]. CN, 101625317A, 2010-01-13.
[28] 郭敬慈. 重铬酸钾紫外曝气法快速测定化学耗氧量和生物耗氧量[P]: 中国, 1267825A, 2000-09-27. Guo Jingci. Method for rapid determination of COD and BOD by UV spectrometry and potassium dichromate[P]. CN, 1267825A, 2000-09-27.
[29] 刘长宇, 董绍俊, 赵惠军.一种生化需氧量的检测方法[P]: 中国, CN102735812A, 2012-10-17. Liu Changyu, Dong Shaojun, Zhao Huijun. Biochemical oxygen demand detection method[P]. CN, 102735812A, 2012-10-17.
[30] Hernando M D, Malato F. Application of ring study: Water toxicity determinations by bioluminescence assay with Vibrio fischeri[J]. Talanta, 2006, 69(2): 370-376.
[31] Giancarlo S, Benedetta B, Fabio C, et al. Surface and ground waters characterization in Tuscany (Italy) by using algal bioassay and pesticide determinations: comparative evaluation of the results and hazard assessment of the pesticides impact on primary productivity[J]. Chemosphere, 2005, 58(5): 571-578.
[32] Zhou X F, Sang W J, Liu S S, et al. Modeling and prediction for the acute toxicity of pesticide mixtures to the freshwater luminescent bacterium Vibrio qinghaiensis sp-Q67[J]. Journal of Environmental Sciences, 2010, 22(3): 433-440.
[33] 孙平, 张逢春, 张影. 蛋白质芯片技术的研究及应用现状[J]. 北华大学学报: 自然科学版, 2009, 10(2): 115-119. Sun Ping, Zhang Fengchun, Zhang Ying. Journal of Beihua University: Natural Science, 2009, 10(2): 115-119.
[34] Trang P T, Berg M, Viet P H, et al. Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples[J]. Environmental Science and Technology, 2005, 39(19): 7625-7630.
[35] Castillo J, Gaspar S, Leth S, et al. Biosensors for lefe quality: design, development and application[J]. Sensors and Actuators B: Chemical, 2004, 102(2): 179-194.
[36] Mia K, Hyun MS, Geoffrey M, et al. A novel biomonitoring system using microbial fuel cells[J]. Journal of Environmental Monitoring, 2007, 9 (12): 1323-1328.
[37] 吴锋, 刘志, 周奔, 等. 单室MFC型生物毒性传感器对重金属离子的检测研究[J]. 环境科学, 2010, 31(1): 1596-1600. Wu Feng, Liu Zhi, Zhou Ben, et al. Chinese Journal of Environmental Science, 2010, 31(1): 1596-1600.