Reviews

Preparation of the Ordered Molecular Assembly Based on Green Ionic Liquid Media

  • MA Fumin ,
  • GUO Jianlin ,
  • CHEN Xiao ,
  • LI Wen ,
  • RUAN Min ,
  • YU Zhanlong
Expand
  • 1. Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Chemical and Material Engineering, Hubei Polytechnic University, Huangshi 435003, China;
    2. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

Received date: 2013-07-08

  Revised date: 2013-08-26

  Online published: 2014-01-22

Abstract

The ionic liquid is widely used in various fields due to its special characteristics and the environment-friendly green performance. In this paper, the research progress is reviewed with a focus on the fabrication of the ordered molecular assembly such as micelles, lyotropic liquid crystals, vesicles, microemulsion and emulsion, using the green ionic liquids as the media, including nonprotic and protic ionic liquids. Firstly, the basic concepts, the classification and the development of the amphiphilic molecule and the ordered molecular assembly are briefly discussed. Then, the assembly behaviors of a variety of ionic surfactants, nonionic surfactants and polymeric surfactants in the non-protic ionic liquid, the protic ionic liquid and the aqueous solution are compared. The type, the structure, the influencing factors, the driving force, and the mechanism of the ordered molecular assembly are analyzed. Its application areas and research trends in this field are also commented.

Cite this article

MA Fumin , GUO Jianlin , CHEN Xiao , LI Wen , RUAN Min , YU Zhanlong . Preparation of the Ordered Molecular Assembly Based on Green Ionic Liquid Media[J]. Science & Technology Review, 2014 , 32(1) : 78 -83 . DOI: 10.3981/j.issn.1000-7857.2014.011

References

[1] 樊国栋, 康丽, 李刚辉. 离子液体在糖酯合成中的研究进展[J]. 科技导 报, 2012, 30(2): 70-73. Fan Guodong, Kang Li, Li Ganghui. Progress of the synthesis of sugar esters in ionic liquids[J]. Science & Technology Review, 2012, 30(2): 70-73.
[2] Ma F M, Chen X, Zhao Y, et al. A nonaqueous lyotropic liquid crystal fabricated by a polyoxyethylene amphiphile in protic ionic liquid[J]. Langmuir, 2010, 26(11): 7802-7807.
[3] Falcioni F, Housden H R, Ling Z L, et al. Soluble, folded and active subtilisin in a protic ionic liquid[J]. Chemical Communications, 2010, 46(5): 749-751.
[4] Greaves T L, Weerawardena A, Krodkiewska I, et al. Protic ionic liquids: Physicochemical properties and behavior as amphiphile self-assembly solvents[J]. The Journal of Physical Chemistry B, 2008, 112(3): 896-905.
[5] Greaves T L, Drummond C J. Protic ionic liquids: Properties and appli-cations[J]. Chemical Reviews, 2008, 108(1): 206-237.
[6] Ohno H, Fukumoto K. Amino acid ionic liquids[J]. Accounts of Chemical Research, 2007, 40(11): 1122-1129.
[7] Wang H, Gurau G, Rogers R D. Ionic liquid processing of cellulose[J]. Chemical Society Reviews, 2012, 41(4): 1519-1537.
[8] Rehman A, Zeng X. Ionic Liquids as Green Solvents and Electrolytes for Robust Chemical Sensor Development[J]. Accounts of Chemical Research, 2012, 45(10): 1667-1677.
[9] Fry H C, Garcia J M, Medina M J, et al. Self-assembly of highly ordered peptide amphiphile metalloporphyrin arrays[J]. Journal of the American Chemical Society, 2012, 134(36): 14646-14649.
[10] Lai Y T, King N P, Yeates T O. Principles for designing ordered protein assemblies[J]. Trends in Cell Biology, 2012, 22(12): 653-661.
[11] Ciesielski A, Perone R, Pieraccini S, et al. Nanopatterning the surface with ordered supramolecular architectures of N9-alkylated guanines: STM reveals[J]. Chemical Communications, 2010, 46(25): 4493-4495.
[12] 陈宗琪, 王光信, 徐桂英, 胶体与界面化学[M]. 北京: 高等教育出版 社, 2001. Chen Zongqi, Wang Guangxin, Xu Guiying. Colloid and interface chemistry[M]. Beijing: Higher Education Press, 2001.
[13] Bloom H, Reinsborough V. Cryoscopy in molten pyridinium chloride[J]. Australian Journal of Chemistry, 20(12): 2583-2587.
[14] Reinsborough V, Valleau J. Ultrasonic studies in molten pyridinium chloride solutions[J]. Australian Journal of Chemistry, 21(12): 2905-2911.
[15] Reinsborough V. An NMR study in molten pyridinium chloride solutions[J]. Australian Journal of Chemistry, 23(7): 1473-1475.
[16] Tran C D, Yu S. Near-infrared spectroscopic method for the sensitive and direct determination of aggregations of surfactants in various media[J]. Journal of Colloid and Interface Science, 2005, 283(2): 613-618.
[17] Fletcher K A, Pandey S. Surfactant aggregation within room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide[J]. Langmuir, 2003, 20(1): 33-36.
[18] Meli L, Santiago J M, Lodge T P. Path-Dependent morphology and relaxation kinetics of highly amphiphilic diblock copolymer micelles in ionic liquids[J]. Macromolecules, 2010, 43(4): 2018-2027.
[19] He Y, Li Z, Simone P, et al. Self-assembly of block copolymer micelles in an ionic liquid[J]. Journal of the American Chemical Society, 2006, 128(8): 2745-2750.
[20] Li N, Zhang S, Zheng L, et al. Aggregation behavior of a fluorinated surfactant in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid[J]. Langmuir, 2009, 25(18): 10473-10482.
[21] Wu J, Li N, Zheng L, et al. Aggregation behavior of polyoxyethylene (20) sorbitan monolaurate (tween 20) in imidazolium based ionic liquids[J]. Langmuir, 2008, 24(17): 9314-9322.
[22] Zhang S, Li N, Zheng L, et al. Aggregation behavior of pluronic triblock copolymer in 1-Butyl-3-methylimidazolium type ionic liquids[J]. The Journal of Physical Chemistry B, 2008, 112(33): 10228-10233.
[23] Gao Y, Li N, Li X, et al. Microstructures of micellar aggregations formed within 1-butyl-3-methylimidazolium type ionic liquids[J]. The Journal of Physical Chemistry B, 2008, 113(1): 123-130.
[24] Patrascu C, Gauffre F, Nallet F, et al. Micelles in ionic liquids: Aggregation behavior of alkyl poly(ethyleneglycol)-ethers in 1-butyl-3-methyl-imidazolium type ionic liquids[J]. ChemPhysChem, 2006, 7 (1): 99-101.
[25] Wang L, Chen X, Chai Y, et al. Lyotropic liquid crystalline phases formed in an ionic liquid[J]. Chemical Communications, 2004 (24): 2840-2841.
[26] Zhuang W C, Chen X, Cai J G, et al. Characterization of lamellar phases fabricated from Brij-30/water/1-butyl-3-methylimidazolium salts ternary systems by small-angle X-ray scattering[J]. Colloids Surfaces A: Physicochem. Eng. Aspects, 2008, 318(1-3): 175-183.
[27] Wang Z N, Liu F, Gao Y, et al. Hexagonal liquid crystalline phases formed in ternary systems of Brij 97-water-lonic liquids[J]. Langmuir, 2005, 21(11): 4931-4937.
[28] Simone P M, Lodge T P. Phase behavior and ionic conductivity of concentrated solutions of polystyrene-poly(ethylene oxide) diblock copolymers in an ionic liquid[J]. ACS Applied Materials & Interfaces, 2009, 1(12): 2812-2820.
[29] Simone P M, Lodge T P. Lyotropic phase behavior of polybutadienepoly( ethylene oxide) diblock copolymers in ionic liquids[J]. Macromole-cules, 2008, 41(5): 1753-1759.
[30] Ge L L, Chen L P, Guo R. Microstructure and lubrication properties of lamellar liquid crystal in Brij30/Bmim PF6/H2O system[J]. Tribology Letters, 2007, 28(2): 123-130.
[31] Friberg S E, Yin Q, Pavel F, et al. Solubilization of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, in a surfactant-water system[J]. Journal of Dispersion Science and Technology, 2000, 21(2): 185-197.
[32] Wu J P, Zhang J, Zheng L Q, et al. Characterization of lyotropic liq-uid crystalline phases formed in imidazolium based ionic liquids[J]. Colloids Surfaces A: Physicochem. Eng. Aspects, 2009, 336(1-3): 18-22.
[33] Hao J C, Song A X, Wang J Z, et al. Self-assembled structure in room-temperature ionic liquids [J]. Chemistry-A European Journal, 2005, 11(13): 3936-3940.
[34] Gao Y N, Han S B, Han B X, et al. TX-100/water/1-butyl-3-methyl-imidazolium hexafluorophosphate microemulsions[J]. Langmuir, 2005, 21(13): 5681-5684.
[35] Cheng S, Fu X, Liu J, et al. Study of ethylene glycol/TX-100/ionic liq-uid microemulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1): 211-215.
[36] Liu L P, Bauduin P, Zemb T, et al. Ionic liquid tunes microemulsion curvature[J]. Langmuir, 2009, 25(4): 2055-2059.
[37] Gao Y N, Li N, Hilfert L, et al. Temperature-induced microstructural changes in ionic liquid-based microemulsions[J]. Langmuir, 2009, 25 (3): 1360-1365.
[38] Adhikari A, Sahu K, Dey S, et al. Femtosecond solvation dynamics in a neat ionic liquid and ionjic liquid microemulsion: Excitation wave-length dependence[J]. The Journal of Physical Chemistry B, 2007, 111 (44): 12809-12816.
[39] Binks B P, Dyab A K F, Fletcher P D I. Novel emulsions of ionic liq-uids stabilised solely by silica nanoparticles[J]. Chemical Communica-tions, 2003 (20): 2540-2541.
[40] Greaves T L, Drummond C J. Ionic liquids as amphiphile self-assem-bly media[J]. Chemical Society Reviews, 2008, 37(8): 1709-1726.
[41] Evans D, Yamauchi A, Wei G, et al. Micelle size in ethylammonium nitrate as determined by classical and quasi-elastic light scattering[J]. The Journal of Physical Chemistry, 1983, 87(18): 3537-3541.
[42] Evans D, Yamauchi A, Roman R, et al. Micelle formation in ethylam-monium nitrate, a low-melting fused salt[J]. Journal of Colloid and Interface Science, 1982, 88: 89-96.
[43] López-Barrón C R, Wagner N J. Structural transitions of ctab micelles in a protic ionic liquid[J]. Langmuir, 2012, 28(35): 12722-12730.
[44] Atkin R, De Fina L M, Kiederling U, et al. Structure and self assembly of pluronic amphiphiles in ethylammonium nitrate and at the silica sur-face[J]. The Journal of Physical Chemistry B, 2009, 113(36): 12201-12213.
[45] Araos M U, Warr G G. Structure of nonionic surfactant micelles in the ionic liquid ethylammonium nitrate[J]. Langmuir, 2008, 24(17): 9354-9360.
[46] Atkin R, Bobillier S M C, Warr G G. Propylammonium nitrate as a solvent for amphiphile self-assembly into micelles, lyotropic liquid crystals, and microemulsions[J]. The Journal of Physical Chemistry B, 2010, 114(3): 1350-1360.
[47] Evans D, Kaler E, Benton W. Liquid crystals in a fused salt:. Beta, gamma-distearoylphosphatidylcholine in N-ethylammonium nitrate[J]. The Journal of Physical Chemistry, 1983, 87(4): 533-535.
[48] Tamura-Lis W, Lis L J, Quinn P J. Structures and mechanisms of lipid phase transitions in nonaqueous media: Dipalmitoylphosphatidylcholine in fused salt[J]. Journal of Physical Chemistry, 1987, 91(17): 4625-4627.
[49] Greaves T L, Weerawardena A, Fong C, et al. Formation of amphiphi-le self-assembly phases in protic ionic liquids[J]. The Journal of Physi-cal Chemistry B, 2007, 111(16): 4082-4088.
[50] Greaves T L, Weerawardena A, Fong C, et al. Many protic ionic liq-uids mediate hydrocarbon-solvent interactions and promote amphiphi-le self-assembly[J]. Langmuir, 2007, 23(2): 402-404.
[51] Wang X, Li Q, Chen X, et al. Effects of structure dissymmetry on ag-gregation behaviors of quaternary ammonium gemini surfactants in a protic ionic liquid EAN[J]. Langmuir, 2012, 28(48): 16547-16554.
[52] Wang X, Chen X, Zhao Y, et al. Nonaqueous lyotropic liquid-crystalline phases formed by gemini surfactants in a protic ionic liquid[J]. Lang-muir, 2011, 28(5): 2476-2484.
[53] Zhang G D, Chen X, Zhao Y R, et al. Lyotropic liquid-crystalline phases formed by Pluronic P123 in ethylammonium nitrate[J]. The Journal of Physical Chemistry B, 2008, 112(21): 6578-6584.
[54] Araos M U, Warr G G. Self-assembly of nonionic surfactants into lyotropic liquid crystals in ethylammonium nitrate, a room-temperature ionic liquid[J]. The Journal of Physical Chemistry B, 2005, 109(30): 14275-14277.
[55] Jiang W Q, Hao J C, Wu Z H. Anisotropic ionogels of sodium laurate in a room-temperature ionic liquid[J]. Langmuir, 2008, 24(7): 3150-3156.
Outlines

/