Reviews

Research and Industrialization Status of Mn-Based Damping Alloys

  • WENG Duan ,
  • LIU Shuang ,
  • HE Jiachang
Expand
  • The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsing-hua University, Beijing 100084, China

Received date: 2013-11-28

  Revised date: 2014-01-03

  Online published: 2014-02-15

Abstract

Damping alloy is a kind of metallic functional materials with high damping capacity which can dissipate mechanical vibration rapidly. There are mainly four kinds of damping alloys, namely the multiple phase alloys, the ferromagnetic alloys, the dislocation alloys and the twin crystal alloys. Through using them to fabricate the component parts of vibration source, many vibration and noise problems in machine manufacturing and some other fields can be solved effectively. Currently, the corresponding research mainly focuses on the doping modification of the Mn-Cu and Mn-Fe alloys, as well as the damping mechanism of the emerging Mn-Ni alloys. So far, the Mn-Cu base alloys are the only damping alloys whose industrialization has been realized. Typically commercial damping alloys are Sonoston, Incramute and M2052. Meanwhile, with lower cost and better mechanical properties, the Mn-Fe damping alloy are promising substitutes for the traditional Mn-Cu damping alloys in the future. In this paper, the classification and features of the different damping alloys are briefly introduced, and the research progress and industrialization status of the above-mentioned alloys are also summarized. The results may provide a new idea and a reference for material choice for damping and noise reduction.

Cite this article

WENG Duan , LIU Shuang , HE Jiachang . Research and Industrialization Status of Mn-Based Damping Alloys[J]. Science & Technology Review, 2014 , 32(3) : 77 -83 . DOI: 10.3981/j.issn.1000-7857.2014.03.012

References

[1] 刘广, 张振忠, 张少明, 等. 高阻尼镁锆合金的研究进展及展望[J]. 材 料导报, 2006, 20(7): 425-428. Liu Guang, Zhang Zhenzhong, Zhang Shaoming, et al. Research progress and prospect of high damping Mg-Zr alloys[J]. Materials Review, 2006, 20(7): 425-428.
[2] 高鹏, 齐笑冰, 宋照伟, 等. 铁基阻尼合金的研究现状及展望[J]. 铸 造, 2010, 59(11): 1190-1194. Gao Peng, Qi Xiaobing, Song Zhaowei, et al. Research status and prospect of Fe-based damping alloys[J]. Foundry, 2010, 59(11): 1190-1194.
[3] 李沛勇, 戴圣龙, 刘大博, 等. 材料阻尼及阻尼合金的研究现状[J]. 材 料工程, 1999(8): 44-48. Li Peiyong, Dai Shenglong, Liu Dabo, et al. Status of research on material damping and damping alloys[J]. Journal of Materials Engineering, 1999(8): 44-48.
[4] 赵稼祥. 加强发展军用功能材料[J]. 材料工程, 1995, 3(31): 1. Zhao Jiaxiang. Strengthening to develop military functional materials[J]. Journal of Materials Engineering, 1995, 3(31): 1.
[5] 王敬丰, 魏文文, 潘复生, 等. 金属阻尼材料研究的新进展及发展方向[J]. 材料导报, 2009, 23(7): 15-19. Wang Jingfeng, Wei Wenwen, Pan Fusheng, et al. New development and prospect of research on metallic damping materials[J]. Materials Review, 2009, 23(7): 15-19.
[6] 邓华铭, 陈树川. 锰基高阻尼合金的研究进展[J]. 金属功能材料, 2000, 7(2): 1-6. Deng Huaming, Chen Shuchuan. General review of present research on Mn-based high damping alloys[J]. Metallic Functional Materials, 2000, 7(2): 1-6.
[7] 西山勝广, 徐金璋. 减振合金的开发现状和展望[J]. 上海钢研, 2002 (3): 48-51. Xishan Shengguang, Xu Jinzhang. Development status and prospects of damping alloys[J]. Shonghai Steel & Iron Research, 2002(3): 48-51.
[8] 方前锋, 朱震刚, 葛庭燧. 高阻尼材料的阻尼机理及性能评估[J]. 物 理, 2000, 29(9): 541-545. Fang Qianfeng, Zhu Zhengang, Ge Tingsui. Characterization and mechanism of high damping materials[J]. Physics, 2000, 29(9): 541-545.
[9] 田莳. 金属物理性能[M]. 北京: 航空工业出版社, 1994. Tian Shi. Physical property of metal[M]. Beijing: Aviation Industry Press, 1994.
[10] 窦光宇. 减振合金噪声的克星[J]. 金属世界, 2000(5): 32. Dou Guangyu. Damping alloy the crusher of noise[J]. Metal World, 2000(5): 32.
[11] Kekalo I B. High-Damping Alloys, Encyclopedia of Materials Science and Engineering[M]. Oxford: Pergamon Press Ltd., 1986.
[12] Igata N, Takeuehi S. Damping mechanisms in high damping materials[J]. Key Engineering Materials, 2006, 319: 225-230.
[13] 黄俊, 张忠明, 袁中岳, 等. Al-5Ti-B变质高锌铝合金的组织和性能[J]. 铸造技术, 2001(6): 60-62. Huang Jun, Zhang Zhongming, Yuang Zhongyue, et al. Microstructure and properties of high zinc aluminum alloy modified by Al-5Ti-B[J]. Foundry Technology, 2001(6): 60-62.
[14] 刘永长, 张忠明, 吕衣礼, 等. 喷雾共沉积SiC增强锌基复合材料的 阻尼特征[J]. 复合材料学报, 1999, 16(3): 62-66. Liu Yongchang, Zhang Zhongming, Lü Yili, et al. Internal friction behavior of SiC particle reinforced MMCs prepared by spray codeposition[ J]. Acta Materiae Compositae Sinica, 1999, 16(3): 62-66.
[15] 施瑞鹤, 林凡, 曾念波, 等. 高阻尼铸铁及阻尼机理[J]. 上海交通大学 学报, 1991, 25(6): 92-98. Shi Ruihe, Lin Fan, Zeng Nianbo, et al. High damping cast iron and it’s damping mechanism[J]. Journal of Shanghai Jiaotong University, 1991, 25(6): 92-98.
[16] 李伟, 李沛勇, 何晓磊. 高强阻尼铝合金轧制板材的组织与性能[J]. 金属功能材料, 2009(6): 11-14. Li Wei, Li Peiyong, He Xiaolei. Microstructure and properties of high strength-damping rolled aluminum sheet[J]. Metallic Functional Materials, 2009(6): 11-14.
[17] 陆文龙, 王云华. 高阻尼铸铁约机械性能和阻尼性能[J]. 南京航空航 天大学学报, 1997, 29(1): 85-89. Lu Wenlong, Wang Yunhua. The mechanical and damping properties of high damping cast iron[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1997, 29(1): 85-89.
[18] Akdemir A, Kus R, Simsir M. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite[J]. Materials Science and Engineering A, 2011, 528(10/11): 3897-3904.
[19] Qian M, Stjohn D H, Forst M T. Character zirconium-rich coring structures in Mg-Zr alloys[J]. Scripta Materialia, 2002, 46(9): 649-654.
[20] 廖利华, 王浩伟, 张修庆, 等. 铸造镁硅合金组织和阻尼性能研究[J]. 材料科学与工艺, 2007, 15(4): 556-559. Liao Lihua, Wang Haowei, Zhang Xiuqing, et al. Research on microstructure and damping capacity of cast Mg-Si alloys[J]. Materials Science and Technology, 2007, 15(4): 556-559.
[21] Azcoitia Ch, Karimi A. Magnetomechanical damping in Fe-Cr alloy and effect of Al and Mo additions[J]. Journal of Alloys and Compounds, 2000, 310(1/2): 160-164.
[22] Xu Y G, Li N, Shen B L, et al. Effect of annealing treatment on damping capacity of Fe-7Al-0.5Ti alloy[J]. Materials Science and Engineering A, 2007, 447(1/2): 163-166.
[23] 胥永刚, 李宁, 于学勇, 等. 环境温度及外磁场对Fe-13Cr-2.5Mo合 金阻尼性能的影响[J]. 材料工程, 2005(4): 15-20. Xu Yonggang, Li Ning, Yu Xueyong, et al. Effects of ambient temperature and magnetic field on damping capacity of Fe-13Cr-2.5Mo damping alloy[J]. Journal of Materials Engineering, 2005(4): 15-20.
[24] 王卫国, 周邦新. 铁磁合金中的磁弹转换[J]. 金属学报, 2000, 36(1): 81-86. Wang Weiguo, Zhou Bangxin. Magneto-elastic interchange in ferromagnetic alloys[J]. Acta Metallurgica Sinica, 2000, 36(1): 81-86.
[25] Tanji T, Moriwaki S, Mio N, et al. Measurement of damping performance of M2052 alloy at cryogenic temperatures[J]. Journal of Alloys and Compounds, 2003, 355(1/2): 207-210.
[26] 方正春. 减振材料的最近发展[J]. 材料开发与应用, 1993, 8(1): 10-16. Fang Zhengchun. The recent development of damping materials[J]. Development and Application of Materials, 1993, 8(1): 10-16.
[27] Baik S H. High damping Fe-Mn martensitic alloys for engineering applications[J]. Nuclear Engineering and Design, 2000, 198(3): 241-252.
[28] 高光惠, 顾敏, 贾禄坤. 减振合金种类,特性及其应用[J]. 金属功能材 料, 1989, 1: 12-14. Gao Guanghui, Gu Min, Jia Lukun. The variety, characterization and application of damping alloy[J]. Metallic Functional Materials, 1989, 1: 12-14.
[29] 吴宝榕. Vacrosil-010合金阻尼性能的研究[J]. 金属功能材料, 1993, 10(7): 8-16. Wu Baorong. Research on the damping capacity of vacrosil-010 alloy [J]. Metallic Functional Materials, 1993, 10(7): 8-16.
[30] 李长龙, 李国彬, 吴玉会. 阻尼减振合金的研究现状[J]. 金属功能材 料, 2003, 10(4): 32-34. Li Changlong, Li Guobin, Wu Yuhui. The status of research on damping alloys[J]. Metallic Functional Materials, 2003, 10(4): 32-34.
[31] 刘克非. 锰铜基高阻尼合金氩弧焊专利焊丝[J]. 材料开发与应用, 1991, 6(1): 20-21. Liu Kefei. Mn-Cu base high damping alloy hydrogen argon arc welding wire for patent[J]. Development and Application of Materials, 1991, 6(1): 20-21.
[32] 方正春, 哈学基. 舰船螺旋桨用2301高阻尼合金的研究[J]. 材料开 发与应用, 1989, 1: 14-25. Fang Zhengchun, Ha Xueji. Study of 2301 high damping alloy for ship propeller[J]. Development and Application of Materials, 1989, 1: 14-25.
[33] Wu Y Q, Yin F X, Hono K. The decomposed γ-phase microstructure in a Mn-Cu-Ni-Fe alloy studied by HRTEM and 3D atom probe[J]. Scripta Materialia, 2002, 46(10): 717-722.
[34] 王海龙, 吕秀芬, 刘和法, 等. 螺旋桨用高阻尼合金降噪效果试验研 究[J]. 华东船舶工业学院学报, 1997, 11(2): 15-19. Wang Hailong, Lü Xiufen, Liu Hefa, et al. A study on the damping effect of high damping propeller alloy[J]. Journal of East China Shipbuilding Institute, 1997, 11(2): 15-19.
[35] 王碧文, 刘丽娟. 锰铜阻尼合金的研究[J]. 有色金属: 冶炼部分, 1995 (6): 46-49. Wang Biwen, Liu Lijuan. Study of Mn-Cu damping alloy[J]. Nonferrous Metals: Extractive Metallurgy, 1995(6): 46-49.
[36] 王丽萍, 郭二军, 葛青文. Zn、Al对Mn-Cu减振合金减振性能的影响[J]. 中国有色金属学报, 1998, 8(1): 78-84. Wang Liping, Guo Erjun, Ge Qingwen. Influences of Zn and Al content of Mn-Cu damping casting alloy on damping property[J]. The Chinese Journal of Nonferrous Metals, 1998, 8(1): 78-84.
[37] Baik S H, Kim J C, Han D W, et al. Fe–Mn martensitic alloys for control of noise and vibration in engineering applications[J]. Materials Science and Engineering A, 2006, 438-440(25): 1101-1105.
[38] Huang S K, Li N, Wen Y H, et al. Temperature dependence of the damping capacity in Fe-19.35Mn alloy[J]. Journal of Alloys and Compounds, 2008, 455(1/2): 225-230.
[39] Takahiro S, Takehiko K. Internal friction of an Fe-28Mn-6Si-5Cr-0.5NbC shape memory alloy[J]. Materials Science and Engineering A, 2006, 438-440(25): 796-799.
[40] Gavriljuk V G, Yakovenko P G. Influence of Nitrogen on Vibration Damping and Mechanical Properties of Fe-Mn Alloys[J]. Scripta Materialia, 1998, 38(6): 931-935.
[41] Granato A, Luecke K. Theory of mechanical damping due to dislocations[J]. Journal of Applied Physics, 1956, 27(6): 583-593.
[42] 李宁, 黄姝珂, 滕劲, 等. 合金元素对Fe-Mn合金层错几率和阻尼性 能的影响[J]. 四川大学学报: 工程科学版, 2007, 39(4): 99-102. Li Ning, Huang Shuke, Teng Jin, et al. Effect of alloy elements on stacking fault probability and damping capacity of Fe-Mn alloy[J]. Journal of Sichuan University: Engineering Science Edition, 2007, 39 (4): 99-102.
[43] Kim J C, Han D W, Baik S H, et al. Effects of alloying elements on martensitic transformation behavior and damping capacity in Fe-17Mn alloy[J]. Materials Science and Engineering A, 2004, 378(1): 323-327.
[44] 于学勇, 郭国林, 杨莉. Fe-Mn基高阻尼合金的研究现状及展望[J]. 铸造技术, 2012, 33(7): 774-776. Yu Xueyong, Guo Guolin, Yang Li. Research development of Fe-Mn based high damping alloys[J]. Foundry Technology, 2012, 33(7): 774-776.
[45] 丁胜, 李宁, 胥永刚, 等. 稀土对Fe-17.5Mn合金阻尼性能的影响[J]. 材料工程, 2006(9): 17-19. Ding Sheng, Li Ning, Xu Yonggang, et al. Effects of rare-earth on damping capacity of Fe-17.5Mn alloy[J]. Journal of Materials Engineering, 2006(9): 17-19.
[46] Huang S K, Li N, Wen Y H, et al. Effect of Si and Cr on stacking fault probability and damping capacity of Fe-Mn alloy[J]. Materials Science and Engineering A, 2008, 479(1/2): 223-228.
[47] Kim J C, Baik S H, Jun J H, et al. Effect of chromium addition on damping capacity, mechanical property, and corrosion resistance of Fe-18%Mn alloy[J]. Key Engineering Materials, 2006, 319: 73-78.
[48] 李宁, 胥永刚, 于学勇, 等. 热处理工艺对Fe-14.04Mn-0.22C阻尼合 金组织和性能的影响[J]. 机械工程材料, 2004, 28(11): 7-9. Li Ning, Xu Yonggang, Yu Xueyong, et al. The effect of heat treatment on the microstructure and properties of Fe-14. 04Mn-0. 22C damping alloy[J]. Materials for Mechanical Engineering, 2004, 28(11): 7-9.
[49] 于学勇, 李宁, 胥永刚. 固溶处理温度对Fe-14Mn-0.22C减振合金阻 尼性能的影响[J]. 四川大学学报: 工程科学版, 2003, 35(5): 84-87. Yu Xueyong, Li Ning, Xu Yonggang. Effect of solution treatment temperature on the damping capacity of Fe-14Mn-0.22C[J]. Journal of Sichuan University: Engineering Science Edition, 2003, 35(5): 84-87.
[50] Choi C S, Jun J H. The influence of Mn content on microstructure and damping capacity in Fe-(17-23)%Mn alloys[J]. Materials Science and Engineering A, 1998, 252(1): 133-138.
[51] Jun J H, Kong D K, Choi C S. The influence of Co on damping capacity of Fe-Mn-Co alloys[J]. Materials Research Bulletin, 1998, 33 (10): 1419-1425.
[52] 李宁, 胥永刚, 于学勇, 等. 碳、镍元素对铁-锰合金的阻尼性能与相 变行为的影响[J]. 机械工程材料, 2006, 30(3): 8-10. Li Ning, Xu Yonggang, Yu Xueyong, et al. Effect of carbon and nickel on phase transformation behavior and damping capacity in the Fe-Mn alloy[J]. Materials for Mechanical Engineering, 2006, 30(3): 8-10.
[53] 于学勇, 易风, 华征潇, 等. 钛对铁锰基减振合金阻尼性能和耐蚀性 能的影响[J]. 腐蚀与防护, 2011, 32(6): 438-444. Yu Xueyong, Yi Feng, Huang Zhengxiao, et al. Effect of Ti on damping and corrosion properties of Fe-Mn alloys[J]. Corrosion & Protection, 2011, 32(6): 438-444.
[54] 于学勇, 程凤军, 杨廷贵. 含氮铁锰合金阻尼性能和力学性能的研究[J]. 兵器材料科学与工程, 2007, 30(1): 63-65. Yu Xueyong, Cheng Fengjun, Yang Tinggui. Influence of nitrogen on damping and mechanical properties of Fe-Mn alloys[J]. Ordnance Material Science and Engineering, 2007, 30(1): 63-65.
[55] Girish B M, Satish B M, Mahesh K. Effect of stacking fault probability and e martensite on damping capacity of Fe-16% Mn alloy[J]. Materials and Design, 2010, 31(4): 2163-2166.
[56] Hicks T J, Pepper A R, Smith J H. Antiferromagnetism in γ phase manganese-palladium and manganese-nickel alloys[J]. Journal of Physics C: Solid State Physics, 1968, 1(6): 1683-1689.
[57] Xie D H, Fu Z M, Cai K H, et al. The research on the microstructure and damping behavior of a new-type Mn-Ni damping alloy[J]. Procedia Engineering, 2012, 27: 1110-1120.
Outlines

/