Spescial Issues

Preparation and Characterization of Lignocellulose Aerogel in Ionic Liquid

  • LU Yun ,
  • QIU Jian ,
  • SUN Qingfeng ,
  • LI Jian
  • 1. Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China;
    2. Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Materials Engineering, Southwest Forestry University, Kunming 650224, China

Received date: 2013-12-16

  Revised date: 2014-01-20

  Online published: 2014-04-09


To prepare a novel wood-based material, wood powder without any pre-treatment was dissolved in ionic liquid. With a circulated freezing-thawing procedure and critical point drying method, lignocellulose aerogel was successfully prepared. Morphological features and crystalline characteristics of the as-prepared material were characterized by field emission electron microscopy (SEM), transmission electron microscope, and X-ray diffraction (XRD). The results showed that the prepared lignocellulose aerogel possesses a three-dimensional structure of open fibrillar network and other novel nanostructure cellulose materials. The structure of the aerogels can be tuned from nanofibrillar to sheet-like skeletons with hierarchical micro- and nanoscale morphology by modifying the freezethaw cycles. The crystallinity first increased and then decreased along with increase of the freezing-thawing times. The formation mechanism of the lignocellulose aerogel was also discussed in this paper.

Cite this article

LU Yun , QIU Jian , SUN Qingfeng , LI Jian . Preparation and Characterization of Lignocellulose Aerogel in Ionic Liquid[J]. Science & Technology Review, 2014 , 32(4-5) : 29 -33 . DOI: 10.3981/j.issn.1000-7857.2014.h1.003


[1] Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484-489.
[2] Huber G W, Dumesic J A. An overview of aqueous- phase catalytic processes for production of hydrogen and alkanes in a biorefinery[J]. Catalysis Today, 2006, 111(1): 119-132.
[3] 卢芸, 孙庆丰, 李坚. 高频超声法纳米纤丝化纤维素的制备与表征[J]. 科技导报, 2013, 31(15): 17-22. Lu Yun, Sun Qingfeng, Li Jian. Preparation and characterization of nanofiber films and foams based on ultrasonic nanofibrillated cellulose from wood[J]. Science & Technology Review, 2013, 31(15): 17-22.
[4] Huber G W, Corma A. Synergies between bio-and oil refineries for the production of fuels from biomass[J]. Angewandte Chemie International Edition, 2007, 46(38): 7184-7201.
[5] Vispute T P, Zhang H, Sanna A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science, 2010, 330(6008): 1222-1227.
[6] 田野, 吴敏, 孟令蝶, 等. 天然纤维素纤维改性及其对水中砷的吸附[J]. 科技导报, 2010, 28(22): 29-32. Tian Ye, Wu Min, Meng Lingdie, et al. Modification of natural cellulose fibers for arsenic adsorption from water[J]. Science & Technology Review, 2010, 28(22): 29-32.
[7] Kim H, Ralph J, Akiyama T. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d 6[J]. BioEnergy Research, 2008, 1(1): 56-66.
[8] Lynd L R, Weimer P J, Van Zyl W H, et al. Microbial cellulose utilization: fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506-577.
[9] Lu F, Ralph J. Non-degradative dissolution and acetylation of ballmilled plant cell walls: High- resolution solution- state NMR[J]. The Plant Journal, 2003, 35(4): 535-544.
[10] Heinze T, Dicke R, Koschella A, et al. Effective preparation of cellulose derivatives in a new simple cellulose solvent[J]. Macromolecular Chemistry and Physics, 2000, 201(6): 627-631.
[11] Wang Z, Yokoyama T, Chang H, et al. Dissolution of beech and spruce milled woods in LiCl/DMSO[J]. Journal of Agricultural and Food Chemistry, 2009, 57(14): 6167-6170.
[12] 陈砺, 邓丽华, 严宗诚, 等. 木质纤维素水解制化学品的研究进展[J]. 科技导报, 2011, 29(34): 68-72. Chen Li, Deng Lihua, Yan Zongcheng, et al. Research progress of lignocellulose hydrolysis of chemicals[J]. Science & Technology Review, 2011, 29(34): 68-72.
[13] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975.
[14] Fukaya Y, Sugimoto A, Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates[J]. Biomacromolecules, 2006, 7(12): 3295-3297.
[15] Honglu X, Tiejun S. Wood liquefaction by ionic liquids[J]. Holzforschung, 2006, 60(5): 509-512.
[16] Zhao H, Baker G A, Song Z, et al. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates[J]. Green chemistry, 2008, 10(6): 696-705.
[17] Peng X, Ren J, Sun R. Homogeneous esterification of xylan-rich hemicelluloseswithmaleicanhydrideinionicliquid[J].Biomacromolecules, 2010, 11(12): 3519-3524.
[18] Kilpeläinen I, Xie H, King A, et al. Dissolution of wood in ionic liquids[J]. Journal of Agricultural and Food Chemistry, 2007, 55(22): 9142-9148.
[19] Pu Y, Jiang N, Ragauskas A J. Ionic liquid as a green solvent for lignin[J]. Journal of Wood Chemistry and Technology, 2007, 27(1): 23-33.
[20] Tan S S Y, MacFarlane D R, Upfal J, et al. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid[J]. Green Chemistry, 2009, 11(3): 339-345.
[21] 樊国栋, 康丽, 李刚辉. 离子液体在糖酯合成中的研究进展[J]. 科技 导报, 2012, 30(2): 70-73. Fan Guodong, Kang Li, Li Ganghui. Progress of the synthesis of sugar esters in ionic liquids[J]. Science & Technology Review, 2012, 30(2): 70-73.
[22] Aaltonen O, Jauhiainen O. The preparation of lignocellulosic aerogels from ionic liquid solutions[J]. Carbohydrate Polymers, 2009, 75(1): 125-129.
[23] Li J, Lu Y, Yang D, et al. Lignocellulose aerogel from wood- ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions[J]. Biomacromolecules, 2011, 12(5): 1860-1867.
[24] Lu Y, Sun Q, Yang D, et al. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution[J]. Journal of Materials Chemistry, 2012, 22(27): 13548-13557.
[25] Segal L, Creely J J, Martin Jr A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the Xray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.