Spescial Issues

Algal Cellulose Aerogel:From Environmental Problem (Green Tide) to Novel High-tech Materials

  • ZHAO Wei ,
  • LU Yun ,
  • OUYANG Huan ,
  • YAN Xiaomei ,
  • PAN Ruocai ,
  • YANG Dongjiang ,
  • SHE Xilin ,
  • LI Jian ,
  • XIA Yanzhi
  • 1. State Key Laboratory of Fiber Materials and Modern Textile; College of Chemistry, Chemical and Environmental Engineering Qingdao University, Qingdao 266000, China;
    2. Key Laboratory of Bio-based Materials Science and Technology, Ministry of Education; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China

Received date: 2013-12-11

  Revised date: 2014-01-18

  Online published: 2014-04-09


This paper discusses the special structure and properties of algal cellulose of Ulva prolifera from green tide for preparing nanofibrillated cellulose (NFC) and aerogels with a high specific surface area. Valuable applications of NFC are reviewed for developing novel applications of Ulva prolifera. NFC was prepared using a simple grinding treatment (20000 r/min, 20 min) after the removal of polysaccharide, ester acid, protein and salt. The obtained cellulose Iα NFC had a uniform width of approximately 40 nm and a high aspect ratio. Grinding is an effective way to convert raw cellulose to nanofibrils. Furthermore, we also prepared flexible algal cellulose aerogel with a low density (23 mg/cm3) and a high specific surface area (277 cm2/g) after t-BuOH freeze-drying. It is also revealed that t-BuOH freeze-drying is an efficient way to assemble 1D NFC to meso- porous materials. All these results were confirmed by SEM, FTIR spectra, and X-ray diffraction profiles. On the basis of that, Ulva prolifera was nanofabrillated without any chemical purification by direct grinding, and algal foam was prepared with freeze-drying to fully use algae from green tide.

Cite this article

ZHAO Wei , LU Yun , OUYANG Huan , YAN Xiaomei , PAN Ruocai , YANG Dongjiang , SHE Xilin , LI Jian , XIA Yanzhi . Algal Cellulose Aerogel:From Environmental Problem (Green Tide) to Novel High-tech Materials[J]. Science & Technology Review, 2014 , 32(4-5) : 34 -39 . DOI: 10.3981/j.issn.1000-7857.2014.h1.004


[1] Jousson O, Pawlowski J, Zaninetti L, et al. Invasive alga reaches California[J]. Nature, 2000, 408(6809): 157-158.
[2] Naeem S, Hahn D R, Schuurman G. Producer-decomposer co-dependency influences biodiversity effects[J]. Nature, 2000, 403: 762-764.
[3] Hiraoka M, Dan A, Shimada S. Different life histories of Enteromorpha prolifera (Ulvales, Chlorophyta) from four rivers on Shikoku Island, Japan[J].Phycologia, 2003, 42(3): 275-284.
[4] Lapointe B E, Tomasko D A, Matzie W R. Eutrophication and trophic state classification of seagrass communities in the Florida Keys[J]. Bulletin of Marine Science, 1994, 54(3): 696-717.
[5] McGlathery K J. Nutrient and grazing influences on a subtropical seagrass community[J]. Marine Ecology Progress Series Oldendorf, 1995, 122(1): 239-252.
[6] Ecohab E. The ecology and oceanography of harmful algal blooms[EB/ OL]. [2013-08-31]. http://www. redtide. whoi. edu/hab/nationplan/ECO HAB/ECOHABhtml. html.
[7] Valiela I, McCleelland J, Hauxwell P, et al. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences[J]. Limnology and Oceanography, 1997, 42(5): 1105- 1118.
[8] Board on sustainable development policy division, NRC. Our Common Journey: A transition toward sustainability[J]. Renewable Resources Journal, 2000, 18(1): 8-15.
[9] Lapointe B, Thacker K, Getten L, et al. Land-based nutrient inputs and their ecological consequences on coral reefs in the Negril Marine Park[C]. Proceedings 9th International Coral Reef Symposium, Bali, Indonesia, October 23-27, 2000.
[10] Byappanahalli M N, Whitman R L, Shively D A, et al. Population structure of Cladophoraborne Escherichia coli in nearshore water of Lake Michigan[J]. Water Research, 2007, 41(16): 3649-3654.
[11] Byappanahalli M N, Sawdey R, Ishii S. Seasonal stability of Cladophora-associated Salmonellain Lake Michigan watersheds[J]. Water Research, 2009, 43(3): 806-814.
[12] Morand P, Briand X. Excessive growth of macroalgae: Asymptom of environmental disturbance[J]. Botanica Marina, 1996, 39(1- 6): 491- 516.
[13] Lapointe B E, Thacker K. Community-based water quality and coral reef monitoring in the Negril Marine Park, Jamaica: Land-based nutrient inputs and their ecological consequences[M]//Porter J W, Porter K G. The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. Boca, Raton, London, NewYork, Washington DC: CRC Press.
[14] Burkholder J M. Encyclopedia of inland waters[M]. New York: Elsevier, 2009: 264-285.
[15] 王超. 浒苔(Ulva prolifera)绿潮危害效应与机制的基础研究[D]. 青 岛: 中国科学院海洋研究所, 2010. Wang Chao. Primary studies on the harmful effects and mechanisms of Ulva prolifera green tide[D]. Qingdao: Institute of Oceanology Chinese Academy of Sciences, 2010.
[16] Tan I H, Blomster J, Hansen G, et al. Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha[J]. Molecular Biology and Evolution, 1999, 16(8): 1011-1018.
[17] Hayden H S, Blomster J, Maggs C A, et al. Linnaeus was right all along: Ulva and Enteromorphaare not distinct general[J]. European Journal of Phycology, 2003, 38(3): 277-294.
[18] Shimada S, Hiraoka M, Nabata S, et al. Molecular phylogenetic analyses of the Japanese Ulva and Enteromorpha (Ulvales, Ulvophyceae), with special reference to the free- floating Ulva[J]. Phycological Research, 2003, 51(2): 99-108.
[19] 曾呈奎, 张峻甫. 黄海西部沿岸海藻区系的分析研究—Ⅰ. 区系的温 度性质[J]. 海洋与湖沼, 1962, 4(1/2): 49-59. Zeng Chengkui, Zhang Junfu. An analytical study of the marine algal floraof the western Yellow Sea Coast-I. The temperature nature of the region[J]. Oceanologia et Limnologia Sinica, 1962, 4(1/2): 49-59.
[20] Tan I H, Blomster J, Hansen G, et al. Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha[J]. Molecular Biology and Evolution, 1999, 16(8): 1011- 1018.
[21] 林英庭, 朱风华, 徐坤, 等. 浒苔营养成分分析与评价[C]//2009山东 饲料科学技术交流大会论文集. 济南: 山东畜牧兽医学会, 2009. Lin Yingting, Zhu Fenghua, Xu Kun, et al. The nutrition analysis and evaluation on enteromorphapr olifera at Qingdao sea area[C]//2009 Shandong Food Science and Technology Exchange Conference. Jinan: Shandong Institute of Animal Husbandry and Veterinary, 2009.
[22] 林文庭. 浅论浒苔的开发与利用[J]. 中国食物与营养,2007(9): 23-25. Lin Wenting. Development and Utilization of Entermorpha[J]. Food and Nutrition in China, 2007(9): 23-25.
[23] 孙文, 张国琛, 李秀辰, 等. 浒苔资源利用的研究进展及应用前景[J]. 水产科学, 2011, 30(9): 588-590. Sun Wen, Zhang Guochen, Li Xiuchen, et al. Potential untilization of enteromorpha prolifera as biotic marine resources[J]. Fisheries Science, 2011, 30(9): 588-590.
[24] 庞国兴, 陈长法, 陈欣, 等. 浒苔饲料产业化技术研究[J]. 饲料工业, 2009, 30(23): 43-44. Pang Guoxing, Chen Changfa, Chen Xin, et al. Study on entermorpha feed industrialization[J]. Feed Industry, 2009, 30(23): 43-44.
[25] 薛志欣, 叶乃好, 姜雪琴, 等. 浒苔多糖纺丝性能的探索性研究[J]. 海 洋科学, 2012, 36(1): 65-68. Xue Zhixin, Ye Naihao, Jiang Xueqin, et al. Feasibility of wetspinning of fibers from enteromorpha polysaccharides[J]. Marine Sciences, 2012, 36(1): 65-68.
[26] Zhao J, Jiang P, Liu Z, et al. Genetic variation of Ulva (Enteromorpha) prolifera (Ulvales, Chlorophyta) —the causative species of the green tides in the Yellow Sea, China[J]. Journal of Applied Phycology, 2011, 23(2): 227-233.
[27] Murphy K J. Aquatic weed problems and their management: A review I. The worldwide scale of the aquatic weed problem[J]. Crop Protection, 1988, 7(4): 232-248.
[28] Kylin H Z. Biochemistry of sea algae[J]. Hoppe-Seyler's Zeitschrift für Physiologische Chemie, 1915, 94(5/6): 337-425.
[29] Percival E G V, Ross A G. The Cellulose of Marine Algae[J]. Nature, 1948, 162(4127): 895-896.
[30] Percival E G V, Ross A G. Marine algal cellulose[J]. Journal of the Chemical Society, 1949, 11: 3041-3043.
[31] Horii F, Hirai A, Kitamaru R. CP/MAS 13C NMR Spectra ofthe Crystalline Components of Native Celluloses[J]. Macromolecules, 1987, 20(9): 2117-2120.
[32] Hayashi N, Kondo T. Enzymatically produced nano-ordered short elements containing cellulose Iβ crystalline domains Ishihara M[J]. Carbohydrate Polymers, 2005, 61(2): 191-197.
[33] Hayashi N, Sugiyama J, Ishihara M O T, et al. Selective degradation of the cellulose Iα component in Cladophora cellulose with Trichodermaviridecellulose[J]. Carbohydrate Research, 1997, 305(1): 109-116.
[34] Bayer E A, Chanzy H, Lamed R, et al. Cellulose, cellulases and cellulosomes[J]. Current Opinion in Structural Biology, 1998, 8(5): 548-557.
[35] Brett C T. Cellulose microfibrils in plants: Biosynthesis, deposition, and integration into the cell wall[C]//International Review of Cytology. San Diego: Academic Press, 2000, 199: 161-199.
[36] Larsson P T, Wickholm K, Iversen T. A CP/MAS13C NMR investigation of molecular ordering in celluloses[J]. Carbohydr Res, 1997, 302(1-2): 19-25.
[37] Koyama M, Sugiyama J, Itoh T. Systematic survey on crystalline features of algal celluloses[J]. Cellulose, 1997, 4(2): 147-160.
[38] Gaill F, Persson J, Sugiyama J, et al. The chitin system in the tubes of deep sea hydrothermal vent worms[J]. Journal of Structural Biology, 1992, 109(2): 116-128.
[39] O'Sullivan A. Cellulose: The structure slowly unravels[J]. Cellulose, 1997, 4(3): 173-207.
[40] Ek R, Gustafsson C, Nutt A, et al. Cellulose powder from Cladophorasp. Algae[J]. Journal of Molecular Recognition, 1998, 11(1- 6): 263-265.
[41] Kataoka Y, Saiki H, Fujita M. Arrangement and superimposition of cellulose microfibrils in the secondary walls of coniferous tracheids[J]. Journal of the Japan Wood Research Society, 1992, 38(4): 327-335.
[42] Johnson M, Shivkumar S. Filamentous green algae additions to isocyanate based foams[J]. Journal of Applied Polymer Science, 2004, 93(5): 2469-2477.
[43] Rozman H D, Tay G S, Abubakar A, et al. Tensile properties of oil palm empty fruit bunch-polyurethane composites[J]. European Polymer Journal, 2001, 37(9): 1759-1765.