Spescial Issues

Influence of High Pressure Homogenization on Self-aggregation and Formation of Aerogel Structure from Nanocellulose

  • LI Qing ,
  • CHEN Wenshuai ,
  • LU Tianhong ,
  • GAO Jiali ,
  • SONG Shan ,
  • YU Haipeng ,
  • LIU Yixing
Expand
  • Key Laboratory of Bio-based Material Science and Technology of Ministry of Education; Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China

Received date: 2013-12-22

  Revised date: 2014-01-26

  Online published: 2014-04-09

Abstract

Cellulose molecule aggregates are an important component of the cell wall of timber. They have diameters at the nanometer scale, high aspect ratio, high specific surface area and rich surface groups. This article is based on "bottom-up" academic thought, and layer-by-layer separation of the wood powder is used to prepare microfibril. By chemical pretreatment, high-intensity ultrasound treatment and high-pressure homogenization treatment, cellulose nanofiber (CNF) was isolated from the cell walls of wood cellulose, and CNF was further assembled into aerogels by freeze-drying method. The results show that by combining high-intensity ultrasonication and high-pressure homogenization, uniform CNF with diameters within 1 and 3 nm and their bundles and stripes can be obtained. The aerogels possess a network structure formed by nanofibers or their interwoven sheets.

Cite this article

LI Qing , CHEN Wenshuai , LU Tianhong , GAO Jiali , SONG Shan , YU Haipeng , LIU Yixing . Influence of High Pressure Homogenization on Self-aggregation and Formation of Aerogel Structure from Nanocellulose[J]. Science & Technology Review, 2014 , 32(4-5) : 51 -55 . DOI: 10.3981/j.issn.1000-7857.2014.h1.007

References

[1] Sehaqui H. Nanofiber networks, aerogels and biocomposites based on nanofibrillated cellulose from wood[D]. Stockholm: Royal Institute of Technology, 2011.
[2] Chen W S, Yu H P, Li Q, et al. Ultralight and highly flexible aerogels with long cellulose I nanofibers[J]. Soft Matter, 2011b, 7(21): 10360- 10368.
[3] Kistler S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127: 741.
[4] Pääkkö M, Vapaavuori J, Silvennoinen R, et al. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities[J]. Soft Matter, 2008, 4(12): 2492- 2499.
[5] Turbak A F, Snyder F W, Sandberg K R. Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential[J]. Journal of Applied Polymer Science: Applied Polymer Symposium, 1983, 37: 815-827.
[6] Herrick F W, Casebier R L, Hamilton J K, et al. Microfibrillated cellulose: Morphology and accessibility[J]. Journal of Applied Polymer Science: Applied Polymer Symposium, 1983, 37: 797-813.
[7] Eichhorn S, Dufresne A, Aranguren M, et al. Review: Current international research into cellulose nanofibres and nanocomposites[J]. Journal of Materials Science, 2010, 45(1): 1-33.
[8] Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: A review[J]. Cellulose, 2010, 17(3): 459-494.
[9] Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: A new family of nature-based materials[J]. Angewandte Chemie International Edition, 2011, 50(24): 2-31.
[10] 叶代勇. 纳米纤维素的制备[J]. 化学进展, 2007, 19(10): 1568-1574. Ye Daiyong. Preparation of nanocellulose[J]. Progress in Chemistry, 2007, 19(10): 1568-1574.
[11] 李勍, 陈文帅, 于海鹏, 等. 纤维素纳米纤维增强聚合物复合材料研 究进展[J]. 林业科学, 2013, 49(8): 126-131. Li Qing, Chen Wenshuai, Yu Haipeng, et al. Cellulose nanofiber reinforced polymer nanocomposites: A short review[J]. Scientia Silvae Sinicae, 2013, 49(8): 126-131.
[12] Samir M A S A, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field[J]. Biomacromolecules, 2005, 6(2): 612-626.
[13] Iwamoto S, Abe K Yano H. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber Network Characteristics[J]. Biomacromolecules, 2008, 9(3): 1022-1026.
[14] Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(2): 3941-3994.
[15] Chen W S, Yu H P, Liu Y X. Preparation of millimeter-long cellulose I nanofibers with diameters of 30-80 nm from bamboo fibers[J]. Carbohydrate Polymers, 2011, 86(2): 453-461.
[16] Chen W S, Yu H P, Liu Y X, et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemicalultrasonic process[J]. Cellulose, 2011a, 18(2): 433-442.
[17] Chen W S, Yu H P, Liu Y X, et al. Individualization of cellulose nanofibers from wood using high- intensity ultrasonication combined with chemical pretreatments[J]. Carbohydrate Polymers, 2011b, 83(4): 1804-1811.
[18] 陈文帅, 于海鹏, 刘一星, 等. 木质纤维素纳米纤丝制备及形态特征 分析[J]. 高分子学报, 2010, 1(11): 1320-1326. Chen Wenshuai, Yu Haipeng, Liu Yixing, et al. A method for isolating cellulose nanofibrils from wood and their morphological characteristics[J]. Acta Polymerica Sinica, 2010, 1(11): 1320-1326.
Outlines

/