Cellulose nanocrystals (CNC) were prepared by FeCl3-catalyzed hydrolysis of cellulose. The effects of temperature, reaction time, the content of FeCl3 and ultrasonic time on the yield of CNC were analyzed. The results show that at the temperature of 110℃, with reaction time of 60 min, 10% FeCl3, and ultrasonic time of 180 min, the yield of CNC reached 22%. The structural, morphological, spectroscopic and crystal properties of CNC and the charges of charged particles dispersed in the liquid phase were investigated using fourier transformation infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Zetasizer. The TEM image shows that CNC are rod-like with the diameter of 20-50 nm, the length of 200-300 nm. XRD spectra shows that CNC are celluloseⅠ with crystallinity of 76.2%. Zeta potential text shows that CNC are well dispersed in water. This catalyst system is environmentally friendly, with mild reaction conditions and simple operations. The obtained CNC have a network structure, which benefits their application in composites.
LU Qilin
,
TANG Lirong
,
YOU Huijuan
,
HU Yang
,
CHEN Yandan
,
CHEN Xuerong
,
HUANG Biao
. Environmentally-friendly and Efficient Preparation of Cellulose Nanocrystals by FeCl3-catalyzed Hydrolysis of Cellulose[J]. Science & Technology Review, 2014
, 32(4-5)
: 56
-60
.
DOI: 10.3981/j.issn.1000-7857.2014.h1.008
[1] Alemdar A, Sain M. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties[J]. Composites Science and Technology, 2008, 68(2): 557-565.
[2] Samir M A S A, Alloin F, Sanchez J Y, et al. Preparation of cellulose whiskers reinforcednanocomposites from an organic medium suspension[J]. Macromolecules, 2004, 37(4): 1386-1393.
[3] Bondeson D, Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis[J]. Cellulose, 2006, 13(2): 171-180.
[4] 唐丽荣, 黄彪, 戴达松, 等. 阳离子交换树脂催化制备纳米纤维素晶体 的谱学性能与流变行为[J]. 高分子材料科学与工程, 2011, 27(6): 45- 48. Tang Lirong, Huang Biao, Dai Dasong, et al. Spectrum and rheological properties of nanocellulose crystal prepared with cation exchange resin[J]. Polymer Materials Science & Engineering, 2011, 27(6): 45-48.
[5] Hayashi N, Kondo T, Ishihara M. Enzymatically produced nano-ordered shortelementscontainingcelluloseⅠβ crystallinedomains[J].Carbohydrate Polymers, 2005, 61(2): 191-197.
[6] 伯永科, 崔海信, 刘淇, 等. 基于金属盐助催化剂的秸秆纤维素稀酸水 解研究[J]. 中国农学通报, 2008, 24(9): 435-438. Bai Yongke, Cui Haixin, Liu Qi, et al. The research about the corm stover hydrolysis versus the metal salt catalyst with dilute acid[J]. Chinese Agricultural Science Bulletin, 2008, 24(9): 435-438.
[7] 黄彪, 欧文, 林雯怡, 等. 一种微纳米纤维素及其制备方法: 中国, 201110246796.5[P]. 2011-08-26. Huang Biao, Ou Wen, Lin Wenyi, et al. A kind of micro/nano cellulose and its preparation method: China, 201110246796.5[P]. [2011-08-26].
[8] 黄金保, 刘朝, 魏顺安. 纤维素单体热解机理的动力学研究[J]. 化学学 报, 2009, 67(18): 2081-2086. Huang Jinbao, Liu Zhao, Wei Shun'an. Thermodynamic studies of pyrolysis mechanism of cellulose monomer[J]. Acta Chimica Sinica, 2009, 67(18): 2081-2086.
[9] Lee H S, Volesky B. Interaction of light metals and protons with seaweed biosorbent[J]. Water Research, 1997, 31(12): 3082-3088.
[10] Wornat M J, Nelson P F. Effects of ion-exchanged calcium on brown coal tar composition as determined by Fourier transform infrared spectroscopy[J]. Energy Fuels, 1992, 6(2): 136-142.
[11] 刘慧娟. 三氯化铁试剂在炔醇衍生物合成中的应用[D]. 厦门: 厦门 大学, 2007. Liu Huijuan. Application of FeCl3 in the synthesis of propargylic derivatives[D]. Xiamen: Xiamen University, 2007.
[12] 余景亮. 三氯化铁催化的炔丙基醇和其酯类化合物的亲核取代反应 及其在合成呋喃中的应用[D]. 厦门: 厦门大学, 2007. Yu Jingliang. FeCl3-catalyzed nucleophilic substitution of propargylic compounds and its application in the synthesis of furans[D]. Xiamen: Xiamen University, 2007.
[13] 刘倩, 王树荣, 王凯歌, 等. 纤维素热裂解过程中活性纤维素的生成 和演变机理[J]. 物理化学学报, 2008, 24(11): 1957-1963. Liu Qian, Wang Shurong, Wang Kaige, et al. Mechanism of formation and consequent evolution of active cellulose during cellulose pyrolysis[J]. Acta Physico-Chimica Sinica, 2008, 24(11): 1957-1963.
[14] 谢伟, 李瑞. 超声在化工应用中机理的探究[J]. 辽宁化工, 2010, 39 (10): 1044-1046, 1049. Xie Wei, Li Rui. Exploration of mechanism of ultrasound used in chemical industry[J]. Liaoning Chemical Industry, 2010, 39(10): 1044- 1046, 1049.
[15] 卢芸, 孙庆丰, 李坚. 高频超声法纳米纤丝化纤维素的制备与表征[J]. 科技导报, 2013, 31(15): 17-22. Lu Yun, Sun Qingfeng, Li Jian. Preparation and characterization of nanofiber films and foams based on ultrasonic nanofibrillated cellulose from wood[J]. Science & Technology Review, 2013, 31(15): 17-22.
[16] 李坚. 木材波谱学[M]. 北京: 科学出版社, 2003: 98-100. Li Jian. Wood spectroscopy[M]. Beijing: Science Press, 2003: 98-100.
[17] Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: A review[J]. Cellulose, 2010, 17(3): 459-494.
[18] Rahimi M, Behrooz R. Effect of cellulose characteristic and hydrolyze conditions on morphology and size of nanocrystal cellulose extracted from wheat straw[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60(8): 529-541.
[19] Segal L, Creely J J, Martin A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
[20] Pouwels A D, Eijkel G B, Arisz P W, et al. Evidence for oligomers in pyrolysates of microcrystalline cellulose[J]. Journal of Analytical and Applied Pyrolysis, 1989, 15: 71-84.
[21] 张力平, 唐焕威, 曲萍, 等. 一维棒状纳米纤维素及光谱性质[J]. 光谱 学及光谱分析, 2011, 31(4): 1097-1100. Zhang Liping, Tang Huanwei, Qu Ping, et al. Spectral property of onedimensional rodlike nano cellulose[J]. Spectroscopy and Spectral Analysis, 2011, 31(4): 1097-1100.
[22] Corre D L, Bras J, Dufresne A. Starch nanoparticles: A review[J]. Biomacromolecules, 2010, 11(5): 1139-1153.