Spescial Issues

Characterization of Spherical Mesoporous Aerogels from Regenerated Bamboo Fiber

  • LIU Zhiming ,
  • YANG Shaoli ,
  • WU Peng
  • College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China

Received date: 2013-12-12

  Revised date: 2014-01-18

  Online published: 2014-04-09


To obtain uniform and stable cellulose aerogels, spherical cellulose aerogels were prepared by titration suspension and vacuum freeze drying method using regenerated bamboo fiber as the raw material. The results of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that spherical cellulose aerogels are typical cellulose Ⅱ structure, and the internal structure was a porous network-like one. The specific surface areas of all spherical cellulose aerogels exceed 240 m2/g. Besides, the pore sizes of spherical cellulose aerogels are below 15 nm, and the minimum density of spherical cellulose aerogels is up to 37 mg/cm3. These data indicate that spherical cellulose aerogels have high specific surface areas and small pore sizes. The results of thermal gravimetric (TG) analysis show that the maximum heat loss temperatures of large, middle and small cellulose aerogels are 364.4, 357.3 and 354.2℃, respectively, while the maximum heat loss temperature of regenerated bamboo fiber is 354.0℃. Spherical cellulose aerogels have potential applications in sewage treatment, sea oil removal and heavy metal ion adsorption.

Cite this article

LIU Zhiming , YANG Shaoli , WU Peng . Characterization of Spherical Mesoporous Aerogels from Regenerated Bamboo Fiber[J]. Science & Technology Review, 2014 , 32(4-5) : 69 -73 . DOI: 10.3981/j.issn.1000-7857.2014.h1.011


[1] 陶丹丹, 白绘宇, 刘石林, 等. 纤维素气凝胶材料的研究进展[J]. 纤维 素科学与技术, 2011, 19(2): 64-75. Tao Dandan, Bai Huiyu, Liu Shilin, et al. Research progress in the cellulose based aerogels materials[J]. Journal of Cellulose Science and Technology, 2011, 19(2): 64-75.
[2] Kistler S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211): 741.
[3] Kistler S S. Coherent expanded aerogels[J]. Journal of Physical Chemistry, 1932, 36(1): 52-64.
[4] Liebner F, Haimer E, Wendland M, et al. Aerogels from unaltered bacterial cellulose: Applications of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels[J]. Macromolesular Bioscience, 2010, 10(4): 349-352.
[5] Wang Z, Liu S, Matsumoto Y, et al. Cellulose gel and aerogel from LiCl/ DMSO solution[J]. Cellulose, 2012, 19(2): 393-399.
[6] Jin H, Nishiyama Y, Wada M, et al. Nanofibrillar cellulose aerogels[J]. Colloids and surfaces A: Physicochemical and engineering aspects, 2004, 240(1-3): 63-67.
[7] Hoepfner S, Ratke L, Milow B. Synthesis and characterisation of nanofibrillar cellulose aerogels[J]. Cellulose, 2008, 15(1): 121-129.
[8] 徐雁. 功能性无机-晶态纳米纤维素复合材料的研究进展与展望[J]. 化学进展, 2011, 23(11): 2183-2199. Xu Yan. Functional Inorganic-cellulose hybrid nanocomposites[J]. Progress in Chemistry, 2011, 23(11): 2183-2199.
[9] 张菁. 基于纤维素的高性能材料制备[D]. 上海: 复旦大学, 2012: 1- 94. Zhang Jing. Preparation of high performance materials based on the cellulose[D]. Shanghai: Fudan University, 2012: 1-94.
[10] 卢芸, 孙庆丰, 李坚. 高频超声法纳米纤丝化纤维素的制备与表征[J]. 科技导报, 2013, 31(15): 17-22. Lu Yun, Sun Qingfeng, Li Jian. Preparation and characterization of nanofiber films and foams based on ultrasonic nanofibrillated cellulose from wood[J]. Science & Technology Review, 2013, 31(15): 17-22.
[11] 王宝和, 李群. 气凝胶制备的干燥技术[J]. 干燥技术与设备, 2013, 11(4): 18-26. Wang Baohe, Li Qun. Drying technology for preparation of aerogels[J]. Drying Technology and Equipment, 2013, 11(4): 18-26.
[12] 田野, 吴敏, 孟令蝶, 等. 天然纤维素纤维改性及其对水中砷的吸附[J]. 科技导报, 2010,28 (22): 29-32. Tian Ye, Wu Min, Meng Lingdie, et al. Modification of natural cellulose fibers for arsenic adsorption from water[J]. Science & Technology Review, 2010, 28(22): 29-32.
[13] 陈砺, 邓丽华, 严宗诚, 等. 木质纤维素水解制化学品的研究进展[J]. 科技导报, 2011, 29(34): 68-72. Chen Li, Deng Lihua, Yan Zongcheng, et al. Research progress of lignocellulose hydrolysis of chemicals[J]. Science & Technology Review, 2011, 29(34): 68-72.
[14] 樊国栋, 康丽, 李刚辉. 离子液体在糖酯合成中的研究进展[J]. 科技 导报, 2012, 30(2): 70-73. Fan Guoding, Kang Li, Li Ganghui. Progress of the synthesis of sugar esters in ionic liquids[J]. Science & Technology Review, 2012, 30(2): 70-73.
[15] Nelson M L, O'connor R T. Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose[J]. Journal of Applied Polymer Science, 1964, 8(3): 1311-1324.
[16] 张俊, 潘松汉. 微晶纤维素的FTIR 研究[J]. 纤维素科学与技术, 1995, 3(1): 22-27. Zhang Jun, Pan Songhan. Study on the FTIR of microcrystalline celluloses[J]. Journal of Cellulose Science and Technology, 1995, 3(1): 22-27.
[17] 唐丽荣, 黄彪, 戴达松, 等. 纳米纤维素碱法制备及光谱性质[J]. 光 谱学与光谱分析, 2010, 30(7): 1876-1879. Tang Lirong, Huang Biao, Dai Dasong, et al. Preparation and spectrum properties of cellulose nanoparticles[J]. Spectroscopy and Spectral Analysis, 2010, 30(7): 1876-1879.
[18] Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues- wheat straw and soy hulls[J]. Bioresource Technology, 2008, 99(6): 1664-1671.
[19] Oh S Y, Yoo D I, Shin Y, et al. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X- ray diffraction and FTIR spectroscopy[J]. Carbohydrate Research, 2005, 340(15): 2376-2391.
[20] 陈嘉翔, 余家鸾. 植物纤维化学结构的研究方法[M]. 广州: 华南理工 大学出版社, 1989: 5-6. Chen Jiaxiang, Yu Jialuan. The research methods of chemical structure of plant fibers[M]. Guangzhou: South China University of Technology Press, 1989: 5-6.
[21] Kaplan D L. Biopolymers from renewable resources[M]. Berlin: Springer, 1998: 1-439.
[22] 张帅, 袁彬兰, 李发学, 等. 新型纤维素纤维的结构和性能[J]. 国际 纺织导报, 2008(12): 4-7, 11. Zhang Shuai, Yuan Binlan, Li Faxue, et al. Structure and properties of novel cellulose fibers[J]. Melliand China, 2008(12): 4-7, 11.
[23] 罗晓刚. 再生纤维素微球的制备、结构和功能[D]. 武汉: 武汉大学, 2010: 1-136. Luo Xiaogang. Preparation,structure and function of regenerated cellulose microspheres[D]. Wuhan: Wuhan University, 2010: 1-136.
[24] Tamon H, Ishizaka H, Yamamoto T, et al. Preparation of mesoporous carbon by freeze drying[J]. Carbon, 1999, 37(12): 2049-2055.
[25] 关倩. 木材纤维素气凝胶的制备与性能研究[D]. 哈尔滨: 东北林业 大学, 2012: 14-19. Guan Qian. Preparation and properties study of aerogels based on cellulose from wood[D]. Harbin: Northeast Forestry University, 2012: 14-19.
[26] Liu F, Lu J, Shen J, et al. Preparation of mesoporous nickel oxide of sheet particles and its characterization[J]. Materials Chemistry and Physics, 2009, 113(1): 18-20.
[27] Chu M Q, Liu G J. Synthesis of liposomes-templated CdSe hollow and solid nanospheres[J]. Materials Letters, 2006, 60(1): 11-14.
[28] Yu J G, Zhao X J, Zhao Q N. Photocatalytic activity of nanometer TiO2 thin films prepared by the sol- gel method[J]. Meterials Chemistry and Physics, 2001, 69(1-3): 25-29.
[29] Zhang Q, Li W, Liu S X. Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal treatment[J]. Powder Technology, 2011, 212(1): 145-150.
[30] 吕玉霞, 李小艳, 米勤勇, 等. 以纤维素/AmimCl溶液制备纤维素气 凝胶[J]. 中国科学: 化学, 2011, 41(8): 1331-1337. Lü Yuxia, Li Xiaoyan, Mi Qinyong, et al. Cellulose aerogels prepared from cellulose/AmimCl solutions[J]. Scientia Sinica (Chimica), 2011, 41 (8): 1331-1337.