This paper proposes an optimization algorithm based on radial basis function (RBF) neural network to deal with heavy workload and complex calculation process of wind farm reactive power capacity calculation. First, a model for power flow computation of power systems containing wind farm is established, and the actual active power of a wind farm is taken as the input of the model, to calculate the reactive compensation capacity required. Second, the actual active power of the wind farm is used as input data, and the resulting reactive power compensation capacity as the target output, to establish a RBF neural network and train it. Finally, with the trained RBF neural network replacing the power flow calculation model, the reactive power compensation capacity for the wind farm is calculated. Calculation results show that the computational complexity of RBF neural network model is lower than that of the power flow calculation model, and the workload is reduced. Thus, the RBF neural network model can be trained to replace the power flow calculation model to calculate the reactive power compensation capacity of wind farm in real time.
ZHANG Hongtao
,
ZHANG Lingyun
,
LI Xiaodan
,
QIU Daoyin
. Reactive Power Compensation Based on Radial Basis Function Neural Network for Wind Farm Connected to Power System[J]. Science & Technology Review, 2014
, 32(11)
: 49
-54
.
DOI: 10.3981/j.issn.1000-7857.2014.11.007
[1] 国务院新闻办公室. 中国的能源政策(2012)白皮书[R]. 北京: 新华社, 2012. News Office of the State Council. White paper on China’s energy policy (2012)[R]. Beijing: Xinhua News Agency, 2012.
[2] 陈珩. 电力系统稳态分析[M]. 北京: 中国电力出版社, 2007. Chen Heng. Power systems steady- state analysis[M]. Beijing: China Electric Power Press, 2007.
[3] 陈帅, 王勇, 杨恒. 基于MATLAB和PSASP的电力系统潮流分析与计 算[J]. 上海电力学院学报, 2012, 28(1): 19-22. Chen Shuai, Wang Yong, Yang Heng. Flow analysis and calculation of power system based on MATLAB and PSASP[J]. Journal of Shanghai University of Electric Power, 2012, 28(1): 19-22.
[4] 王海超, 周双喜, 鲁宗相, 等. 含风电场的电力系统潮流计算的联合迭 代方法及应用[J]. 电网技术, 2005, 29(18): 59-62. Wang Haichao, Zhou Shuangxi, Lu Zongxiang, et al. A joint iterative method for load flow calculation of power system containing unified wind farm and its application[J]. Power System Technology, 2005, 29 (18): 59-62.
[5] 吴义纯, 丁明, 张立军. 含风电场的电力系统潮流计算[J]. 中国电机工 程学报, 2005, 25(4): 36-39. Wu Yichun, Ding Ming, Zhang Lijun. Power flow analysis in electrical power networks including wind farms[J]. Proceedings of the Chinese Society for Electrical Engineering, 2005, 25(4): 36-39.
[6] 李广凯. 风力发电中的无功控制[J]. 国际电力, 2005, 9(4): 31-33. Li Guangkai. Reactive power control in wind power[J]. International Electric Power for China, 2005, 9(4): 31-33.
[7] 董云龙, 吴杰, 王念春, 等. 无功补偿技术综述[J]. 节能, 2003(9): 13- 19. Dong Yunlong, Wu Jie, Wang Nianchun, et al. Summary of reactive power compensation technique[J]. Energy Conservation, 2003(9): 13-19.
[8] 张洋. 风电场无功补偿容量及其控制方法的研究[D]. 吉林: 东北电力 大学, 2005. Zhang Yang. Research on wind farm reactive power compensation capacity and its control method [D]. Jilin: Northeast Dianli University, 2005.
[9] 张平. 风电场无功优化补偿技术研究[D]. 长沙: 长沙理工大学, 2009. Zhang Ping. Research on reactive power optimization compensation technology of wind farm[D]. Changsha: Changsha University of Science and Technology, 2009.
[10] 朱雪凌, 张洋, 高昆, 等. 风电场补偿问题的研究[J]. 电力系统保护与 控制, 2009, 37(16): 68-72. Zhu Xueling, Zhang Yang, Gao Kun, et al. Research on the compensation of reactive power for wind farms[J]. Power System Protection and Control, 2009, 37(16): 68-72.
[11] 刘艳妮, 王玮, 徐丽杰, 等. 基于遗传算法的风电场无功补偿容量的 计算[J]. 太阳能学报, 2008, 29(11): 1444-1448. Liu Yanni, Wang Wei, Xu Lijie, et al. Reactive power compensation calculation based on genetic algorithm for wind farm connected to power system [J]. Acta Energiae Solaris Sinica, 2008, 29(11): 1444- 1448.
[12] Leung F H F, Lam H K, Ling S H, et al. Tuning of the structure and parameters of a neural network using an improved genetic algorithm[J]. IEEE Transactions on Neural Networks, 2003, 14(1): 79-88.
[13] 江岳文, 陈冲, 温步瀛. 随机模拟粒子群算法在风电场无功补偿中的 应用[J]. 中国电机工程学报, 2008, 28(13): 47-52. Jiang Yuewen, Chen Chong, Wen Buying. Application of stochastic simulation’s particle swarm algorithm in the compensation of reactive power for wind farms[J]. Proceedings of the Chinese Society for Electrical Engineering, 2008, 28(13): 47-52.
[14] 冉然. 并网风电场无功补偿策略研究[D]. 北京: 华北电力大学, 2011. Ran Ran. Study on reactive power compensation strategy for gridconnected wind farm[D]. Beijing: North China Electric Power University, 2011.
[15] Chen S. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks, 1991, 2 (2): 302-309.
[16] Peng H, Ozaki T, Haggan V, et al. A parameter optimization method for radial basis function type models[J]. IEEE Transactions on Neural Networks, 2003, 14(2): 432-438.
[17] Bors G, Pitas I. Median Radial Basis Function Neural Network[J]. IEEE Transactions on Neural Networks, 1996, 7(6): 1351-1364.
[18] 边肇祺, 张学工. 模式识别[M]. 北京: 清华大学出版社, 1999. Bian Zhaoqi, Zhang Xuegong. Pattern recognition[M]. Beijing: Tsinghua University Press, 1999.