Reviews

Birth Oxidative Stress and the Development of Antioxidant System in Newborns

  • LI Tiejun ,
  • YIN Jie ,
  • DUAN Jielin ,
  • WU Li ,
  • YIN Yulong
Expand
  • 1. Institute of Subtropical Agriculture, Chinese Academy Sciences, Changsha 410125, China;
    2. University of Chinese Academy Sciences, Beijing 100101, China

Received date: 2014-03-04

  Revised date: 2014-04-08

  Online published: 2014-05-29

Abstract

Oxidative stress is considered to be an imbalance between oxidation and anti-oxidation and the tendencytowards theoxidative state. Many studieshave demonstrated that environmental changes (i.e. oxygen concentration) and other stresses induce a significant increase in generation of reactive oxygen species (ROS) in infants during birth process and disturb the oxidative balance. The antioxidant system of newborns is weak and insufficient to scavenge the excessive ROS, leading to birth oxidative injury. This review focuses on birth oxidative stress and development of the antioxidant system in newborns to provide corresponding reference for further research in this field.

Cite this article

LI Tiejun , YIN Jie , DUAN Jielin , WU Li , YIN Yulong . Birth Oxidative Stress and the Development of Antioxidant System in Newborns[J]. Science & Technology Review, 2014 , 32(14) : 79 -83 . DOI: 10.3981/j.issn.1000-7857.2014.14.013

References

[1] Aktan I, Dunkel B, Cunningham F M. Equine platelets inhibit E. coli growth and can be activated by bacterial lipopolysaccharide and lipoteichoic acid although superoxide anion production does not occur and platelet activation is not associated with enhanced production by neutrophils[J]. Veterinary Immunology and Immunopathology, 2013, 152 (3/4): 209-217.
[2] Yin J, Ren W K, Wu X S, et al. Oxidative stress-mediated signaling pathways: A review[J]. Journal of Food Agriculture & Environment, 2013, 11(2): 132-139.
[3] Muller D P. Free radical problems of the newborn[J]. Proceedings of the Nutrition Society, 1987, 46(1): 69-75.
[4] Friel J K, Friesen R W, Harding S V, et al. Evidence of oxidative stress in full-term healthy infants[J]. Pediatric Research, 2004, 56(6): 878-882.
[5] Escobar J, Cubells E, Enomoto M, et al. Prolonging in utero-like oxygenation after birth diminishes oxidative stress in the lung and brain of mice pups[J]. Redox Biology, 2013, 1(1): 297-303.
[6] Kirimi E, Peker E, Tuncer O, et al. Increased serum malondialdehyde level in neonates with hypoxic-ischaemic encephalopathy: Prediction of disease severity[J]. Journal of International Medical Research, 2010, 38 (1): 220-226.
[7] Weinberger B, Anwar M, Henien S, et al. Association of lipid peroxidation with antenatal betamethasone and oxygen radial disorders in preterm infants[J]. Biology of the Neonate, 2004, 85(2): 121-127.
[8] Schrader M, Fahimi H D. Peroxisomes and oxidative stress[J]. Biochimica et Biophysica Acta-Biomembranes, 2006, 1763(12): 1755-1766.
[9] Klaunig J E, Kamendulis L M, Hocevar B A. Oxidative stress and oxidative damage in carcinogenesis[J]. Toxicologic Pathology, 2010, 38 (1): 96-109.
[10] Sozer V, Korkmaz G G, Konukoglu D, et al. Effects of peritoneal-and hemodialysis on levels of plasma protein and lipid oxidation markers in diabetic patients[J]. Minerva Medica, 2013, 104(1): 75-84.
[11] Sureda A, Ferrer M D, Mestre A, et al. Prevention of neutrophil protein oxidation with vitamins C and e diet supplementation without affecting the adaptive response to exercise[J]. International Journal of Sport Nutrition and Exercise Metabolism, 2013, 23(1): 31-39.
[12] Yin J, Ren W, Liu G, et al. Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radical Research, 2013, 47(12): 1027-1035.
[13] Yin J, Wu M M, Xiao H, et al. Development of an antioxidant system after early weaning in piglets[J]. Journal of Animal Science, 2013, 92(2): 612-619.
[14] Lu A L, Li X, Gu Y, et al. Repair of oxidative DNA damage: mechanisms and functions[J]. Cell Biochemistry and Biophysics, 2001, 35(2):141-170.
[15] Valko M, Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico-Biological Interactions, 2006, 160(1):1-40.
[16] Pompella A, Visvikis A, Paolicchi A, et al. The changing faces of glutathione, a cellular protagonist[J]. Biochemical Pharmacology, 2003, 66(8): 1499-1503.
[17] Nur E, Verwijs M, de Waart D R, et al. Increased efflux of oxidized glutathione (GSSG) causes glutathione depletion and potentially diminishes antioxidant defense in sickle erythrocytes[J]. Biochimica et Biophysica Acta-Biomembranes, 2011, 1812(11): 1412-1417.
[18] Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. International Journal of Biochemistry &Cell Biology, 2007, 39(1): 44-84.
[19] Montero D, Walther G, Stehouwer C D, et al. Effect of antioxidant vitamin supplementation on endothelial function in type 2 diabetes mellitus: Asystematic review and meta-analysis of randomized controlled trials[J]. Obesity Reviews, 2014, 15(2): 107-116.
[20] Mao G, Zou Y, Feng W, et al. Extraction, preliminary characterization and antioxidant activity of Se-enriched Maitake polysaccharide[J]. Carbohydrate Polymers, 2014, 101: 213-219.
[21] Victoria F N, Martinez D M, Castro M, et al. Antioxidant properties of (R)-Se-aryl thiazolidine-4-carboselenoate[J]. Chemico-Biological Interactions, 2013, 205(2): 100-107.
[22] BlokhinaO,VirolainenE, FagerstedtKV.Antioxidants,oxidative damage and oxygen deprivation stress: A review[J]. Annals of Botany, 2003, 91 (2): 179-194.
[23] McCord J M, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein)[J]. Journal of Biological Chemistry, 1969, 244(22): 6049-6055.
[24] Matsuyama D, Kawahara K. Oxidative stress-induced formation of a positive-feedback loop for the sustained activation of p38 MAPK leading to the loss of cell division in cardiomyocytes soon after birth[J]. Basic Research in Cardiology, 2011, 106(5): 815-828.
[25] Sutherland M R, Bertagnolli M, Lukaszewski M A, et al. Preterm birth and hypertension risk: The oxidative stress paradigm[J]. Hypertension, 2014, 63(1): 12-18.
[26] Gill R S, Lee T F, Liu J Q, et al. Cyclosporine treatment reduces oxygen free radical generation and oxidative stress in the brain of hypoxiareoxygenated newborn piglets[J]. PLoS One, 2012, 7(7): e40471.
[27] Robles R, Palomino N, Robles A. Oxidative stress in the neonate[J]. Early Human Development, 2001, 65(S1): S75-S81.
[28] Gulbayzar S, Arica V, Hatipoglu S, et al. Malondialdehyde level in the cord blood of newborn infants[J]. Iranian Journal of Pediatrics, 2011, 21 (3): 313-319.
[29] Gonzalez M M, Madrid R, Arahuetes R M.P hysiological changes in antioxidant defences in fetal and neonatal rat liver[J]. Reproduction Fertility and Development, 1995, 7(5): 1375-1380.
[30] Granot E, Golan D, Rivkin L, et al. Oxidative stress in healthy breast fed versus formula fed infants[J]. Nutrition Research, 1999,19(6): 869-879.
[31] Li W, Kong A N. Molecular mechanisms of Nrf2-mediated antioxidant response[J]. Molecular Carcinogenesis, 2009, 48(2): 91-104.
[32] Sun Z, Wu T, Zhao F, et al. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response[J]. Molecular and Cellular Biology, 2011, 31(9): 1800-1811.
[33] Dias I H, riffiths H R. Oxidative stress in diabetes-circulating advanced glycation end products, lipid oxidation and vascular disease[J]. Annals of Clinical Biochemistry, 2014, 51(Pt 2): 125-127.
[34] Vermorken A J, Zhu J, Andres E. Obesity and colorectal cancer risk: The role of oxidative stress[J]. Gut, 2014, 63(3): 529-530.
[35] Derbre F, Gratas-Delamarche A, Gomez-Cabrera M C, et al. Inactivityinduced oxidative stress: A central role in age-related sarcopenia?[J]. European Journal of Sport Science, 2014, 14(S1): S98-S108.
[36] Weber D, Stuetz W, Bernhard W, et al. Oxidative stress markers and micronutrients in maternal and cord blood in relation to neonatal outcome[J]. European Journal of Clinical Nutrition, 2014, 68(2): 215-222.
Outlines

/