The galloping of a quad- bundled conductor seriously threats the safe operation of the issue of EHV lines, and a theoretical study of galloping can effectively help the development of anti-dance techniques. A two-node cable element with three translational and one torsional degrees of freedom at each node is utilized to imitate the bundled conductor, and a two-node space beam elements are used to simulate the spacers, thus to establish the galloping finite element analysis model with considerations of the sub- conductor wake interference. The finite element equation is solved by the time integration method and the calculation program is compiled in Matlab. The central difference method is used to deal with the acceleration and the velocity is handled by the backward difference method. Typical examples of the galloping are simulated. With numerical simulations, the dancing in consideration of the effect of the sub-conductor wake is compared with that without. It is shown that this method can effectively simulate the galloping of ice quad-bundled conductors, the algorithms enjoy high accuracy and efficiency, and can be used in the design to prevent the dancing.
LU Junyan
,
QIN Li
,
LI Yanan
. Numerical Simulation of Galloping of Iced Quad-Bundled Conductor[J]. Science & Technology Review, 2014
, 32(15)
: 43
-48
.
DOI: 10.3981/j.issn.1000-7857.2014.15.005
[1] 郭应龙, 李国兴, 尤传永. 输电线路舞动[M]. 北京: 中国电力出版社, 2003. Guo Yinglong, Li Guoxing, Long Chuanyong. Transmission line galloping[M]. Beijing: China Electric Power Press, 2003.
[2] Den Hartog J P. Transmission line vibration due to sleet[J]. AIEE Transaction, 1932, 51(6): 1074-1086.
[3] Nigol O, Buchan P G. Conductor galloping-part II torsional mechanics[J]. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(2): 708 -719.
[4] Yu P, Desai Y M, Shah A. Three-degree-of-freedom model for galloping. Part I: Formulation[J]. Journal of Engineering Mechanics, 1993, 119 (12): 2404-2425.
[5] 李万平, 杨新祥, 张立志. 覆冰导线群的静气动力特性[J]. 空气动力学 学报, 1995, 13(4): 427-434. Li Wanping, Yang Xinxiang, Zhang Lizhi. Dynamic statie aerodynamie charaeteristiesofthe gallo ping of bundledIeed power transmission lines [J]. Acta Aerodynamica Sinica, 1995, 13(4): 427-434.
[6] 李万平. 覆冰导线群的动态气动力特性[J]. 空气动力学学报, 2000, 18 (4): 413-420. Li Wanping. Dynamic aerodynamic characteristics of the galloping of bundled iced power transmission lines[J]. Acta Aerodynamica Sinica, 2000, 18(4): 413-420.
[7] 张宏雁, 严波, 周松, 等. 覆冰四分裂导线静态气动力特性试验[J]. 空 气动力学学报, 2011, 29(2): 150-154. ZHang Hongyan, Yan Bo, ZHou Song, et al. Static test on aerodynam ic characteristics of iced quad bundled conductors[J]. Acta Aerodynamica Sinica, 2011, 29(2): 150-154.
[8] Desai Y M, Yu P, Popplewell N. Finite element modeling of transmission line galloping[J]. Computers & Structures, 1995, 57(3): 407-420.
[9] 何锃, 赵高煜, 李上明. 大跨越分裂导线的静力求解[J]. 中国电机工程 学报, 2001, 21(11): 34-37. He Zeng, ZHao Gaoyu, Li Shangming. Static analisys and computation of long-span multi-conductor transmission lins [J]. Proceedings of the CSEE, 2001, 21(11): 34-37.
[10] 严波, 胡景, 周松, 等. 覆冰四分裂导线舞动数值模拟及参数分析[J]. 振动工程学报, 2010, 23(3): 310-316. Yan Bo, Hu Jing, ZHou Song, et al. Numerical simulation and parameter analysis of galloping for iced quad-bundled conductor[J]. Journal of Vibration Engineering, 2010, 23(3): 310-316.
[11] 刘晶波, 杜修力. 结构动力学[M]. 北京: 机械工业出版社, 2009. Liu Jingbo, Du Xiuli. Structural dynamics[M]. Beijing: China Machine Press, 2009.
[12] Veletsos A S, Darbre G R. Dynamic stiffness of parabolic cables[J]. Journal of Earthquake Engineering & Structural Dynamics, 1983, 11(3): 367-401.
[13] Mathur R K, Shah A H, Trainor P G S. Dynamics of a guyed transmission tower system[J]. IEEE Transactions on Power Delivery, 1987, PWRD-2(3): 908-916.