Adsorption Characteristics of Shale to CH4 Based on Adsorption Potential Theory

  • XIONG Jian ,
  • LIANG Lixi ,
  • LIU Xiangjun ,
  • ZHANG Andong
  • State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Received date: 2013-11-20

  Revised date: 2014-04-30

  Online published: 2014-06-20


Methane adsorption properties of shale gas reservoirs are the premise and foundation for shale gas reservoir development, and have an important influence on resource forecast and productivity evaluation. Based on the measured isotherm data under different temperature and adsorption potential theory, the ε-ω adsorption characteristic curve can be drawn and is described by analyzing and treating the isotherm data. The result shows that the ε-ω adsorption characteristic curve of shale to CH4 is unique and independent of temperature, which can forecast methane adsorption at different temperature and obtain the adsorption isotherm of shale to CH4. The density of adsorbed phase plays an important role in forecasting the methane adsorption by the ε-ω adsorption characteristic curve, which is relevant to the accuracy of methane adsorption forecast. Therefore, the calculation method of the density of adsorbed phase needs further studies.

Cite this article

XIONG Jian , LIANG Lixi , LIU Xiangjun , ZHANG Andong . Adsorption Characteristics of Shale to CH4 Based on Adsorption Potential Theory[J]. Science & Technology Review, 2014 , 32(17) : 19 -22 . DOI: 10.3981/j.issn.1000-7857.2014.17.002


[1] Montgomery S L, Jarvie D M, Bowker K A, et al. Mississippian Barnett Shale, Fort Worth basin, northcentral Texas: Gas-shale play with multitrillion cubic foot potential[J]. AAPG Bulletin, 2005, 89(2): 155175.
[2] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shalegas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[3] Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
[4] Ji L, Zhang T, Milliken K L. Experimental investigation of main controls to methane adsorption in clayrich rocks[J]. Applied Geochemistry, 2012, 27(12): 2533-2545.
[5] Zhang T, Geoffrey S T, Stephen C R, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47: 120-131.
[6] 熊伟, 郭为, 刘洪林, 等. 页岩的储层特征以及等温吸附特征[J]. 天然气工业, 2012, 32(1): 113-116. Xiong Wei, Guo Wei, Liu Honglin, et al. Shale reservoir characteristics and isothermal adsorption properties[J]. Nature Gas Industry, 2012, 32 (1): 113-116.
[7] 李武广, 杨胜来, 陈峰, 等. 温度对页岩吸附解吸的敏感性研究[J]. 矿物岩石, 2012, 32(2): 115-120. Li Wuguang, Yang Shenglai, Chen Feng, et al. The sensitivity study of shale gas adsorption and desorption with rising reservoir temperature[J]. Journal of Mineralogy and Petrology, 2012, 32(2): 115-120.
[8] 吉利明, 邱军利, 张同伟, 等. 泥页岩主要黏土矿物组分甲烷吸附实验[J]. 地球科学, 2012, 37(5): 1043-1050. Ji Liming, Qiu Junli, Zhang Tongwei, et al. Experiments on methane adsorption of common clay minerals in shale[J]. Earth Science, 2012, 37 (5): 1043-1050.
[9] 宋叙, 王思波, 曹涛涛, 等. 扬子地台寒武系泥页岩甲烷吸附特征[J]. 地质学报, 2013, 87(7): 1041-1048. Song Xu, Wang Sibo, Cao Taotao, et al. The Methane adsorption features of cambrian shales in the Yangtze platform[J]. Acta Geologica Sinica, 2013, 87(7): 1041-1048.
[10] 闫建萍, 张同伟, 李艳芳, 等. 页岩有机质特征对甲烷吸附的影响[J]. 煤炭学报, 2013, 38(5): 805-811. Yan Jianping, Zhang Tongwei, Li Yanfang, et al. Effect of the organic matter characteristics on methane adsorption in shale[J]. Journal of China Coal Society, 2013, 38(5): 805-811.
[11] 祝立群, 涂晋林, 施亚钧. 吸附势理论推算混合气在载铜活性炭上的吸附平衡[J]. 化工学报, 1991, 68(6): 746-749. Zhu Liqun, Tu Jinlin, Shi Yajun. Predicting mixed-gases adsorption on active carbonsupported copper[J]. Journal of Chemical Industry and Engineering, 1991, 68(6): 746-749.
[12] 李明, 顾安忠, 鲁雪生, 等. 吸附势理论在甲烷临界温度以上吸附中的应用[J]. 天然气化工, 2003, 28(5): 28-31. Li Ming, Gu Anzhong, Lu Xuesheng, et al. Study on methane adsorption above critical temperature by adsorption potential theory[J]. Natural Gas Chemical Industry, 2003, 28(5): 28-31.
[13] 崔永君, 李育辉, 张群, 等. 煤吸附甲烷的特征曲线及其在煤层气储集研究中的作用[J]. 科学通报, 2005, 50(S1): 76-81. Cui Yongjun, Li Yuhui, Zhang Qun, et al. The adsorption characteristic curve of coal methane and its role in coalbed methane reservoir research[J]. Chinese Science Bulletin, 2005, 50(S1): 76-81.
[14] 苏现波, 陈润, 林晓英, 等. 吸附势理论在煤层气吸附/解吸中的应用[J]. 地质学报, 2008, 82(10): 1382-1389. Su Xianbo, Chen Run, Lin Xiaoying, et al. Application of adsorption potential theory in the fractionation of coalbed gas during the process of adsorption/desorption[J]. Acta Geologica Sinica, 2008, 82(10): 13821389.
[15] 王红侠, 李伟, 唐元明, 等. 吸附势理论在活性炭对氙的吸附平衡研究中的应用[J]. 离子交换与吸附, 2010, 26(6): 565-569. Wang Hongxia, Li Wei, Tang Yuanming, et al. Appliction of the adsorption potential theory to study adsorption equilibrium of xenon on activated charcoal[J]. Ion Exchange and Adsorption, 2010, 26(6): 565569.
[16] 杨宏民, 于保种, 王兆丰. 基于吸附势理论的煤对N2吸附特性的研究[J]. 煤矿安全, 2010, 40(4): 1-3. Yang Hongmin, Yu Baozhong, Wang Zhaofeng. Study on adsorption characteristic of coal to nitrogen based on adsorption potential theory[J]. Safety in Coal Mines, 2010, 40(4): 1-3.
[17] 朱埗瑶, 赵振国. 界面化学基础[M]. 北京: 化学工业出版社, 1996: 336-338. Zhu Buyao, Zhao Zhenguo. The foundation of interface chemistry[M]. Beijing: Chemical Industry Press, 1996: 336-338
[18] Amankwah K A G, Sehwarz J A. A modified approach for estimating pseudo-vapour pressure in the application of the Dubinin Astskhove equation[J]. Carbon, 1995, 33(9): 1313-1319.
[19] Ozawa S, Kusumi S, Ogino Y J. Physical adsorption of gases at high pressures(IV): An improvement of the Dubinin Astakhov adsorption equation[J]. Colloid & Interface Science, 1976, 56(1): 83-91.
[20] Dubinin M M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces[J]. Chemical Reviews, 1960, 60(2): 235-241.