Reviews

Deep Heat Transfer Technology Using Thermal Probe in High Temperature Region of Coal Storage Pile (Gangue Hill) Spontaneous Combustion

  • MA Li ,
  • LI Bei ,
  • DENG Jun ,
  • LI Zhenbao ,
  • ZHANG Ying
Expand
  • 1. Engineering Research Center of West-China Coal Mine Safety, Ministry of Education, Xi'an University of Science and Technology, Xi'an 710054, China;
    2. Key Laboratory of Western Mine Exploration and Hazard Prevention, Ministry of Education, Xi'an University of Science and Technology, Xi'an 710054, China;
    3. College of Energy Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China;
    4. College of Continuation Education, Xi'an University of Science and Technology, Xi'an 710054, China

Received date: 2014-02-21

  Revised date: 2014-04-13

  Online published: 2014-06-20

Abstract

The spontaneous combustion of coal storage pile and waste dump is one of the unresolved problems encountered in coal mining and transportation. Thermal probe has a powerful heat transfer capability in a cooling system without external energy. In order to prevent spontaneous combustion of coal storage piles (hillock) due to regeneration, a method using thermal probe to remove heat in coal storage pile is proposed, which damages the regeneration environment to prevent coal fire. In this paper, the characteristics of spontaneous combustion of coal pile are analyzed in detail, and the latest applications and research practices of heat pipe in other industries are also included. Compared with other traditional technologies on coal fire prevention, several advantages of heat pipe in coal fire controlling are described. Technical problems of specific thermal probe, design methods, basic parameters, performance, equipment and implementation technology are discussed. And several measurements are given for its application and promotion, which may enrich the technical means of prevention and control in coal spontaneous combustion.

Cite this article

MA Li , LI Bei , DENG Jun , LI Zhenbao , ZHANG Ying . Deep Heat Transfer Technology Using Thermal Probe in High Temperature Region of Coal Storage Pile (Gangue Hill) Spontaneous Combustion[J]. Science & Technology Review, 2014 , 32(17) : 76 -80 . DOI: 10.3981/j.issn.1000-7857.2014.17.012

References

[1] 国家发展和改革委员会, 国家能源局. 煤炭工业发展"十二五"规划[R]. 北京: 国家发展和改革委员会, 2012. National Development and Reform Commission, National Energy Administration. The 12th Five-Year Plan of coal industrydevelopment[R]. Beijing: National Development and Reform Commission, 2012.
[2] 鲍庆国, 文虎, 王秀林, 等. 煤自燃理论及防治技术[M]. 北京: 煤炭工业出版社, 2002. Bao Qingguo, Wen Hu, Wang Xiulin. The theory of coal spontaneous combustion and control techniques[M]. Beijing: China Coal Industry Publishing House, 2002.
[3] 陈文敏, 杨金和, 詹隆, 等. 煤矿废弃物综合利用技术[M]. 北京: 化学工业出版社, 2011. Chen Wenmin, Yang Jinhe, Zan Long, et al. The comprehensive utilization technology of coal waste[M]. Beijing: Chemical Industry Press, 2011.
[4] 张力, 姜泽宁. 矿区煤矸石的综合治理[J]. 应用技术, 2010, 10(1): 46-48. Zhang Li, Jiang Zening. The comprehensive control of gangue hill in mine[J]. Application Technology, 2010, 10(1): 46-48.
[5] 邓军, 肖旸, 张幸亥, 等. 煤火灾害防治技术的研究与应用[J]. 煤矿安全, 2012, 12(S1): 58-61. Deng Jun, Xiao Yang, Zhang Xinghai, et al. Research and application of coal fire disaster prevention and control technology[J]. Safety in Coal Mines, 2012, 12(S1): 58-61.
[6] 王光友, 吴国光, 张永建, 等. 煤堆自燃影响因素及防治[J]. 能源技术与管理, 2008, 6(1): 70-72. Wang Guangyou, Wu Guoguang, Zhang Yongjian, et al. Factors and prevention of coal pile spontaneous combustion[J]. Energy Technology and Management, 2008, 6(1): 70-72.
[7] 张瑞新, 谢和平. 煤堆自然发火的试验研究[J]. 煤炭学报, 2001, 26 (2): 168-171. Zhang Ruixin, Xie Heping. Experimental study of the propensity of coal stockpiles to spontaneous combustion[J]. Journal of China Coal Society, 2001, 26(2): 168-171.
[8] 文虎. 煤自燃全过程实验模拟及高温区域动态变化规律的研究[J]. 煤炭学报, 2004, 29(4): 689-693. Wen Hu. Experiment simulation of whole process on coal self-ignition and study of dynamical change rule in high-temperature zone[J]. Journal of China Coal Society, 2004, 29(4): 689-693.
[9] 韩宏彬. 火电厂煤场自燃的形成特征及防控方法[J]. 中国电力, 2013, 46(4): 98-103. Han Hongbin. Characteristic and prevention of spontaneous combustion in power plant coal yard[J]. Electric Power, 2013, 46(4): 98-103.
[10] 覃涛, 李学刚, 王志, 等. 煤堆自燃分析及防范措施[J]. 电力技术, 2010, 19(9): 59-61. Qin Tao, Li Xuegang, Wang Zhi, et al. Analysis of spontaneous combustion of coal pile and preventive measures[J]. Electric Power Technology, 2010, 19(9): 59-61.
[11] 李树刚, 徐精彩. 地面储煤堆自燃规律的实验研究[J]. 辽宁工程技术大学学报: 自然科学版, 2000, 19(3): 229-231. Li Shugang, Xu Jingcai. Experimental study of spontaneous combustion rule of ground coal storage pile[J]. Journal of Liaoning Technical University: Natural Science Edition, 2000, 19(3): 229-231.
[12] 徐舜华. 青海省柴木铁路冻土低温热棒应用条件和效果研究[D]. 兰州: 兰州大学, 2010. Xu Shunhua. Study on application conditions and cooling effect of heat pipe in permafrost regions of chaidaer-muli railway in Qinghai Province[D]. Lanzhou: Lanzhou University, 2010.
[13] 盛振兴. 热管自然制冰技术研究[D]. 青岛: 山东科技大学, 2011. Sheng Zhenxing. Research on technology of ice making by heat pipe utilizing natural cold resource[D]. Qingdao: Shandong University of Science and Technology, 2011.
[14] 李永强. 青藏铁路多年冻土区热棒路基的设计计算[J]. 铁道工程学报, 2007, 110(11): 32-36. Li Yongqiang. Design and calculation of thermal probes subgrade along Qinghai-Tibet railway in permafrost area[J]. Journal of Railway Engineering Society, 2007, 110(11): 32-36.
[15] 徐兵魁, 熊治文. 青藏高原多年冻土区热棒路基设计计算[J]. 中国铁道科学, 2006, 27(5): 17-22. Xu Bingkui, Xiong Zhiwen. Design calculation of heat pipe subgrade in permafrost regions of Qinghai-Tibet plateau[J]. China Railway Science, 2006, 27(5): 17-22.
[16] 杨永平, 魏庆朝, 张鲁新, 等. 青藏铁路多年冻土地区热管路基三维数值分析[J]. 中国铁道科学, 2005, 26(2): 20-24. Yang Yongping, Wei Qingchao, Zhang Luxin, et al. 3D numerical study on the thermosyphon used in embankments inpermafrost regions of qinghai-tibetrailway[J]. China Railway Science, 2005, 26(2): 20-24..
[17] 李俊文. 插入热管对沙土传热特性影响的初步研究[D]. 武汉: 华中科技大学, 2007. Li Junwen. Study on influence of heat transfer in sandinserted heat pipe[D]. Wuhan: Huazhong University of Science & Technology, 2007.
[18] 陈良才, 李俊文. 用热管技术增大夜晚沙土降温幅度的实验研究[J]. 华中科技大学学报: 自然科学版, 2007, 35(7): 82-88. Chen Liangcai, Li Junwen. Experiments of lowering the temperature of sandy soil speedily at night by heat-pipe technology[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2007, 35(7): 82-88.
[19] 王淑彦, 成庆林, 韩洪升, 等. 井筒重力热管传热特性的研究[J]. 节能技术, 2013, 31(1): 46-60. Wang Shuyan, Cheng Qinglin, Han Hongsheng, et al. Study of heat transfer characteristic in gravity heat pipe of wellbore[J]. Energy Conservation Technology, 2013, 31(1): 46-60.
[20] 吴晓东, 张玉丰, 韩国庆, 等. 井筒重力热管室内实验与矿场试验研究[J]. 西南石油大学学报: 自然科学版, 2008, 30(1): 140-142. Wu Xiaodong, Zhang Yufeng, Han Guoqing, et al. Laboratory experiment and field test of gravity heat pipe[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2008, 30(1): 140-142.
[21] 韩东, 彭涛, 李强. 重力热管对粳稻堆的温度分布影响试验研究[J]. 中国粮油学报, 2009, 24(4): 114-117. Han Dong, Peng Tao, Li Qiang. Influence of gravity heat pipes on temperature distribution in a rice bulk[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(4): 114-117.
[22] 曾强, 王德明, 蔡忠勇. 煤火研究与治理进展[J]. 矿业安全与环保, 2011, 38(1): 72-75. Zeng Qiang, Wang Deming, Cai Zhongyong. Progress of study and control of coal fire[J]. Mining Safety & Environmental Protection, 2011, 38(1): 72-75.
[23] 潘卫东, 连逢愈, 邓宏艳, 等. 寒区工程中热棒技术的应用原理和前景[J]. 岩石力学与工程学报, 2003, 22(S2): 2673-2676. Pan Weidong, Lian Fenyu, Deng Hongyan, et al. Application principle and prospect of thermal probe technique in cold region engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2673-2676.
[24] 刘挺. 热虹吸管热回收装置传热特性及应用研究[D]. 北京: 北京工业大学, 2010. Liu Ting. Research on heat transfer characteristics and application of thermosyphon heat recovery devices[D]. Beijing: Beijing University of Technology, 2010.
[25] Singh S S. Optimal micro heat pipe configuration on high performance heat spreaders[D]. SanJosé: SanJose State University, 2009.
[26] Armijo K M. Heat Pipe performance enhancement with binary mixture fluids that exhibit strong concentration marangonieffects[D]. California: University of California, Berkeley, 2011.
[27] 李永强. 青藏铁路多年冻土区热棒直径对降温效果和产冷量的影响分析[J]. 岩土工程学报, 2011, 33(S1): 503-508. Li Yongqiang. Influences of diameter of thermal probes on effect of decreasing earth temperature and producing cold quantity along Qinghai-Tibet railway in permafrost area[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 503-508.
[28] 樊云龙. 多年冻土地区热棒路基温度场研究[D]. 西安: 长安大学, 2011. Fan Yunlong. Study on the temperature field of thermal probe subgrade in the permafrost regions[D]. Xi'an: Chang'an University, 2011.
[29] 杨永平. 热管技术及其在多年冻土工程中的应用研究[J]. 岩土工程学报, 2005, 27(6): 698-706. Yang Yongping. Thermosyphon technology and its application in permafrost[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 698-706.
[30] 曹元平. 热棒在青藏铁路试验段中的应用[J]. 路基工程, 2003(6): 31-34. Cao Yuanping. Application of heat club in test section on Qinghai-Tibet railway[J]. Subgrade Engineering, 2003(6): 31-34.
Outlines

/