[1] Le Houérou H. Climate change, drought and desertification[J]. Journal of Arid Environments, 1996, 34(2): 133-186.
[2] 李鹏飞, 孙小明, 赵昕奕. 近50年中国干旱半干旱地区降水量与潜在 蒸散量分析[J]. 干旱区资源与环境, 2012, 26(7): 57-63. Li Pengfei, Sun Xiaoming, Zhao Xinyi. Analysis of precipitation and potential evapotranspiration in arid and semi area of China in recent 50 years[J]. Journal of Arid Land Resources and Environment, 2012, 26(7): 57-63.
[3] Klopatek J, Conant R, TKlopatek C. Environmental factors controlling soil respiration in three semiarid ecosystems[J]. Soil Science Society of America Journal, 2000, 64(1): 383-390.
[4] Wohlfahrt G, Fenstermaker L, Farnone III J. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem[J]. Global Change Biology, 2008, 14(7): 1475-1487.
[5] Xie J, Li Y, Zhai C, et al. CO2 absorption by alkaline soils and its implication to the global carbon cycle[J]. Environmental Geology, 2009, 56(5): 953-961.
[6] Belnap J, Lange O. Structure and functioning of biological soil crusts: A synthesis, in Ecological Studies[M]//Belnap J, Lange O. Biological Soil Crusts: Structure, Function, and Management. Berlin Heidelberg: Springer-Verlag, 2001: 471-479.
[7] 张元明, 王雪芹. 荒漠地表生物土壤结皮形成与演替特征概述[J]. 生 态学报, 2010, 30(16): 4484-4492. Zhang Yuanming, Wang Xueqin. Summary on formation and developmental characteristics of biological soil crusts in desert areas[J]. Acta Ecologica Sinica, 2010, 30(16): 4484-4492.
[8] Harper K, Marble J. A role for nonvascular plants in management of arid and semiarid rangelands[M]//Tueller P. Vegetation Science Applications for Rangeland Analysis and Management. Boston: Kluwer Academic Publishers, 1988: 137-169.
[9] West N. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions[J]. Advances in Ecological Research, 1990, 20: 179-223.
[10] Belnap J. Surface disturbances: Their role in accelerating desertification[J]. Environmental Monitoring and Assessment, 1995, 37(1-3): 39-57.
[11] Evans R, Johansen J. Microbiotic crusts and ecosystem processes[J]. Critical Reviews in Plant Sciences, 1999, 18(2): 183-225.
[12] Lange O, Belnap J, Reichenberger H. Photosynthesis of the cyanobacterial soil crust lichen Collema tenax from arid lands in southern Utah, USA: Role of water content on light and temperature responses of CO2 exchange[J]. Functional Ecology, 2002, 12(2): 195-202.
[13] Langhans T, Storm C, Schwabe A. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques[J]. Microbial Ecology, 2009, 58(2): 394-407.
[14] Abed R, Al Kharusi S, Schramm A, et al. Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman[J]. FEMS Microbiology Ecology, 2010, 72(3): 418-428.
[15] Castillo-Monroy A, PMaestre F. Biological soil crusts: Recent advances in our knowledge of their structure and ecological function[J]. Revista Chilena De Historia Natural, 2011, 84(1): 1-21.
[16] Lan S, Wu L, Zhang D, et al. Assessing level of development and successional stages in biological soil crusts with biological indicators[J]. Microbial Ecology, 2013, 66(2): 394-403.
[17] Lange O, Kidron G, Budel B, et al. Taxonomic composition and photosynthetic characteristics of thebiological soil crusts' covering sand dunes in the western Negev Desert[J]. Functional Ecology, 1992, 6: 519-527.
[18] Belnap J, Gardner J. Soil microstructure in soils of the Colorado Plateau: The role of the cyanobacterium Microcoleus vaginatus[J]. Western North American Naturalist, 1993, 53(1): 40-47.
[19] Belnap J, Phillips S, Flint S, et al. Global change and biological soil crusts: effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions[J]. Global Change Biology, 2008, 14 (3): 670-686.
[20] Büdel B, Darienko T, Deutschewitz K, et al. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency[J]. Microbial Ecology, 2009, 57(2): 229-247.
[21] Belnap J. The potential roles of biological soil crusts in dryland hydrologic cycles[J]. Hydrological Processes, 2006, 20(15): 3159-3178.
[22] Sponseller R. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem[J]. Global Change Biology, 2007, 13(2): 426-436.
[23] Belnap J, Phillips S, Miller M. Response of desert biological soil crusts to alterations in precipitation frequency[J]. Oecologia, 2004, 141 (2): 306-316.
[24] Gao Y, Li X, Liu L, et al. Seasonal variation of carbon exchange from a revegetation area in a Chinese desert[J]. Agricultural and Forest Meteorology, 2012, 156: 134-142.
[25] Li X, Zhang P, Su Y, et al. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study[J]. Catena, 2012, 97: 119-126.
[26] Warren-Rhodes K, Rhodes K, Pointing S, et al. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert[J]. Microbial Ecology, 2006, 52(3): 389-398.
[27] Zaady E, Kuhn U, Wilske B, et al. Patterns of CO2 exchange in biological soil crusts of successional age[J]. Soil Biology and Biochemistry, 2000, 32(7): 959-966.
[28] GarciaPichel F, Belnap J. Microenvironments and microscale productivity of cyanobacterial desert crusts[J]. Journal of Phycology, 1996, 32(5): 774-782.
[29] Lange O. Photosynthesis of soil crust biota as dependent on environmental factors [M]//Belnap J, Lange O. Biological Soil Crusts: Structure, Function, and Management. Berlin Heidelberg: Springer-Verlag, 2001: 217-240.
[30] Grote E, Belnap J, Housman D, et al. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: Implications for global change[J]. Global Change Biology, 2010, 16(10): 2763-2774.
[31] Tracy C, Streten-Joyce C, Dalton R, et al. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in Northern Australia[J]. Environmental Microbiology, 2010, 12(3): 592-607.
[32] Belnap J. Biological soil crusts and wind erosion, in Ecological Studies[M]//Belnap J, Lange O. Biological Soil Crusts: Structure, Function, and Management. Berlin Heidelberg: Springer-Verlag, 2001: 339-347.
[33] 苏延贵, 李新荣, 陈应武, 等. 温度和CO2浓度升高对荒漠藻结皮光 合作用的影响[J]. 应用生态学报, 2010, 21(9): 2217-2222. Su Yangui, Li Xinrong, Chen Yingwu, et al. Effects of elevated temperature and CO2 on desert algal crust photosynthesis[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2217-2222.
[34] Garcia-Pichel F, Belnap J, Neuer S, et al. Estimates of global cyanobacterial biomass and its distribution[J]. Algological Studies, 2003, 109(1): 213-227.
[35] Chen L, Li D, Song L, et al. Effects of salt stress on carbohydrate metabolism in desert soil Alga Microcoleus vaginatus Gom[J]. Journal of Integrative Plant Biology, 2006, 48(8): 914-919.
[36] Mager D, Thomas A. Extracellular polysaccharides from cyanobacterial soil crusts: A review of their role in dryland soil processes[J]. Journal of Arid Environments, 2011, 75(2): 91-97.
[37] Unland H, Houser P, Shuttleworth W, et al. Surface flux measurement and modeling at a semi-arid Sonoran Desert site[J]. Agricultural and Forest Meteorology, 1996, 82(1-4): 119-153.
[38] Thomas A, Hoon S, Linton P. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari[J]. Applied Soil Ecology, 2008, 39(3): 254-263.
[39] Kuhn U, Wolf A, Gries C, et al. Field measurements on the exchange of carbonyl sulfide between lichens and the atmosphere[J]. Atmospheric Environment, 2000, 34(28): 4867-4878.
[40] Su Y, Wu L, Zhang Y. Characteristics of carbon flux in two biologically crusted soils in the Gurbantunggut Desert, Northwestern China[J]. Catena, 2012, 96: 41-48.
[41] Schlesinger W, Pippen J, Wallenstein M, et al. Community composition and photosynthesis by photoautotrophs under quartz pebbles[J]. Southern Mojave Desert Ecology, 2003, 84(12): 3222-3231.
[42] Lee Y, Ahn C, Kim H, et al. Cyanobactericidal effect of Rhodococcus sp isolated from eutrophic lake on Microcystis sp[J]. Biotechnology Letters, 2010, 32(11): 1673-1678.
[43] 胡春香, 刘永定. 土壤藻生物量及其在荒漠结皮的影响因子[J]. 生态 学报, 2003, 23(2): 284-291. Hu Chunxiang, Liu Yongding. Soil algal biomass and its influential factors in desert soil crusts[J]. Acta Ecological Sinica, 2003, 23(2): 284-291.
[44] Garcia-Pichel F, Johnson S, Youngkin D, et al. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau[J]. Microbial Ecology, 2003, 46(3): 312-321.
[45] Castle S, Morrison C, Barger N. Extraction of chlorophyll a from biological soil crusts: A comparison of solvents for spectrophotometric determination[J]. Soil Biology and Biochemistry, 2011, 43(4): 853-856.
[46] 兰书斌, 刘永定, 胡春香. 不同有机溶剂萃取生物结皮中叶绿素a效 率的比较研究[J]. 中国沙漠, 2009, 29(3): 524-528. Lan Shubin, Liu Yongding, Hu Chunxiang. Comparison of contents of chlorophyll-a extracted by different organic solvents in biological crusts[J]. Journal of Desert Research, 2009, 29(3): 524-528.
[47] Lan S, Wu L, Zhang D. Ethanol outperforms multiple solvents in the extraction of chlorophyll-a from biological soil crusts[J]. Soil Biology and Biochemistry, 2011, 43(4): 857-861.
[48] Meyns S, Illi R, Ribi B. Comparison of chlorophyll-a analysis by HPLC and spectrophotometry: Where do the differences come from?[J]. Archiv fur Hydrobiologie, 1994, 132(2): 129-139.
[49] Housman D, Powers H, Collins A, et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J]. Journal of Arid Environments, 2006, 66(4): 620-634.
[50] 张晶, 张惠文, 张成刚. 实时荧光定量PCR及其在微生物生态学中的 应用[J]. 生态学报, 2005, 25(6): 1445-1450. Zhang Jing, Zhang Huiwen, Zhang Chenggang. Real-time fluorescent quantitative PCR and its application in microbial ecology[J]. Acta Ecological Sinica, 2005, 25(6): 1445-1450.
[51] Koskenniemi K, Lyra C, Rajaniemi-Wacklin P, et al. Quantitative real-time PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea[J]. Applied and Environmental Microbiology, 2007, 73(7): 2173-2179.
[52] Ginzinger D. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream[J]. Experimental Hematology, 2002, 30(6): 503-512.
[53] Rinta-Kanto J, Ouellette A, Boyer G, et al. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR[J]. Environmental Science and Technology, 2005, 39(11): 4198-4205.
[54] Moreira C, Martins A, Azevedo J, et al. Application of real-time PCR in the assessment of the toxic cyanobacterium Cylindrospermopsis raciborskii abundance and toxicological potential[J]. Applied Microbiology and Biotechnology, 2011, 92(1): 189-197.
[55] Li K, Liu R, Zhang H, et al. The diversity and abundance of bacteria and oxygenic phototrophs in Saline Biological Desert Crusts in Xinjiang, Northwest China[J]. Microbial Ecology, 2013, 66(1): 40-48.
[56] Bates S, Nash III T, Sweat K, et al. Fungal communities of lichendominated biological soil crusts: Diversity, relative microbial biomass, and their relationship to disturbance and crust cover[J]. Journal of Arid Environments, 2010, 74(10): 1192-1199.
[57] Garcia-Pichel F, Belnap J. Small-scale environments and distribution of biological soil crusts, in Ecological Studies[M]//Belnap J, Lange O. Biological Soil Crusts: Structure, Function, and Management. Berlin Heidelberg: Springer-Verlag, 2001: 193-201.