Articles

Multiple Detection Data’s Simplification in Complicated Goafs

  • LUO Zhouquan ,
  • ZHANG Wenfen ,
  • XU Shimin
Expand
  • 1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China;
    2. School of Resources & Safety Engineering, China University of Mining & Technology, Beijing 100083, China

Received date: 2014-03-18

  Revised date: 2014-04-25

  Online published: 2014-07-22

Abstract

This paper studies data reduction of laser scanning to solve the problems generated by repeating of laser detection for blind areas. Blind areas of single detection were avoided and data of sparse areas were densified by multi-point detection. Distribution characteristics of point cloud data were concluded by topological relation of laser scanning track analysis. A more efficient point cloud data reduction method, the side angle integrated method, retained the geometric characteristics of goafs proposed in contrast to conventional data reduction, and the point cloud data of intensive areas were diluted. Through comparison of the 3D model volume, reduction rate and other indicators before and after reduction, the verification results show that the method ensures the integrity of boundary 3D information and the data reduction rate reaches 15%-25%. This method provides a new idea for laser scanning 3D information reduction in complex goafs, laying a good foundation for the subsequent 3D modeling and application.

Cite this article

LUO Zhouquan , ZHANG Wenfen , XU Shimin . Multiple Detection Data’s Simplification in Complicated Goafs[J]. Science & Technology Review, 2014 , 32(20) : 54 -58 . DOI: 10.3981/j.issn.1000-7857.2014.20.008

References

[1] 过江, 古德生, 罗周全, 等. 金属矿山采空区3D激光探测新技术[J]. 矿 冶工程, 2006, 26(5): 16. Guo Jiang, Gu Desheng, Luo Zhouquan, et al. A new technique of 3D laser survey of finished stopes in metal mines[J]. Mining and Metallurgical Engineering, 2006, 26(5): 6.
[2] Luo Z Q, Liu X M, Su J H, et al. Deposit 3D modeling and application[J]. Journal of Central South University of Technology, 2007, 14(2): 225-229.
[3] 罗周全, 刘晓明, 张木毅, 等. 大规模采场三维探测及回采指标可视化 计算[J]. 中南大学学报: 自然科学版, 2009, 40(6): 1732. Luo Zhouquan, Liu Xiaoming, Zhang Muyi, et al. Stope 3D monitoring and its mining index visible calculation[J]. Journal of Central South University: Science and Technology, 2009, 40(6): 1732.
[4] 罗贞焱. 基于CMS探测的采空区三维可视化系统研究[D]. 长沙: 中南 大学, 2010. Luo Zhenyan. The research of goaf’s 3D visual system based on CMS detection[D]. Changsha: Central South University, 2010.
[5] 王国焘, 罗周全, 鹿浩, 等. CMS在矿山开采安全中的应用[J]. 有色金 属: 矿山部分, 2009, 61(5): 53-56, 65. Wang Guotao, Luo Zhouquan, Lu Hao, et al. Application of CMS in mining safety[J]. Nonferrous Metals: Mine Section, 2009, 61(5): 53-56, 65.
[6] 周煜, 张万兵, 杜发荣, 等. 散乱点云数据的曲率精简算法[J]. 北京理 工大学学报, 2010, 30(7): 785-789. Zhou Yu, Zhang Wanbing, Du Farong, et al. Algorithm for reduction of scattered point cloud data based on curvature[J]. Transactions of Beijing Institute of Technology, 2010, 30(7): 785-789.
[7] Zhang K, Yan J, Chen S C. Automation construction of building footprints from airborne LiDAR date[J]. IEEE Transaction on Geosciences and Remote Sensing, 2006, 44(9): 2523-2533.
[8] 周波, 陈银刚, 顾泽元, 等. 基于八叉树网格的点云数据精简方法研究[J]. 现代制造工程, 2008(3): 64-67. Zhou Bo, Chen Yingang, Gu Zeyuan, et al. Data point reduction on octree cube algorithm[J]. Modern Manufacturing Engineering, 2008(3): 64-67.
[9] 邵正伟, 席平. 基于八叉树编码的点云数据精简方法[J]. 工程图学学 报, 2010, 31(4): 73-76. Shao Zhengwei, Xi Ping. Data reduction for point cloud using octree coding[J]. Journal of Engineering Graphics, 2010, 31(4): 73-76.
[10] 亢晓琛, 刘纪平, 林祥国, 等. 多核处理器的机载激光雷达点云并行 三角网渐进加密滤波方法[J]. 测绘学报, 2013, 42(3): 331-336. Kang Xiaochen, Liu Jiping, Lin Xiangguo, et al. Parallel filter of progressive TIN densification for airborne LiDAR point cloud using multi-core CPU[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42 (3): 331-336.
[11] 李凤霞, 饶永辉, 刘陈, 等. 基于法向夹角的点云数据精简算法[J]. 系 统仿真学报, 2012, 24(9): 1980-1983, 1987. Li Fengxia, Rao Yonghui, Liu Chen, et al. Point cloud simplification based on angle between normal[J]. Journal of System Simulation, 2012, 24(9): 1980-1983, 1987.
[12] 张鸿飞, 程效军, 贾东峰, 等. 多视点散乱点云配准及压缩改进算法 研究[J]. 测绘通报, 2012(2): 43-47. Zhang Hongfei, Cheng Xiaojun, Jia Dongfeng, et al. A study of improved registration and compression algorithm of multi-vision disorder point clouds[J]. Bulletin of Surveying and Mapping, 2012(2): 43-47.
[13] Reddy M B, Reddy L S S. Dimensionality reduction: An empirical study on the usability of IFE-CF (independent feature elimination by Ccorrelation and F-correlation) measures[J]. International Journal of Computer Science Issues, 2010, 7(1): 74-81.
[14] 方源敏, 夏永华, 陈杰, 等. 基于改进的角度偏差法的采空区点云数 据精简[J]. 地球科学与环境学报, 2012, 34(2): 106-110. Fang Yuanmin, Xia Yonghua, Chen Jie, et al. Study on point cloudy data simplification of goaf based on improved angular deviation method[J]. Journal of Earch Sciences and Environment, 2012, 34(2): 106-110.
[15] 隋连升, 蒋庄德. 栅格型点云数据的自由曲面建模技术研究[J]. 计算 机辅助设计与图形学学报, 2003, 15(10): 1293-1297. Sui Liansheng, Jiang Zhuangde. Free form surface modeling with grid cloud data[J]. Journal of Computer-aided Design & Computer Graphics, 2003, 15(10): 1293-1297.
[16] 陈慧群, 陈少克. 逆向工程中带孔洞的曲面对象三角剖分法研究[J]. 组合机床与自动化加工技术, 2006(11): 45-47. Chen Huiqun, Chen Shaoke. Research on triangulation method of object surface with holes in RE[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2006(11): 45-47.
[17] 柯映林, 单东日. 基于边特征的点云数据区域分割[J]. 浙江大学学 报: 工学版, 2005, 39(3): 377-380, 396. Ke Yinglin, Shan Dongri. Edge-based segmentation of point cloud data[J]. Journal of ZheJiang University: Engineering Science, 2005, 39(3): 377-380, 396.
[18] 王辅辅, 苏智剑, 张长禄, 等. 义齿三维模型构建中海量点云数据模 型的精简方法[J]. 中国组织工程研究与临床康复, 2011, 15(4): 648-652. Wang Fufu, Su Zhijian, Zhang Changlu, et al. A reduction method for mass point cloud data in the three-dimensional denture construction[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011, 15(4): 648-652.
[19] 刘磊, 张建霞, 郑作亚, 等. lidar点云数据的栅格化重心压缩方法[J]. 测绘科学, 2011, 36(1): 90-91. Liu Lei, Zhang Jianxia, Zheng Zuoya, et al. Grid compression method in center of gravity for lidar cloud data[J]. Science of Surveying and Mapping, 2011, 36(1): 90-91.
[20] 倪小军, 姜晓峰, 葛亮, 等. 特征保留的点云数据自适应精简算法[J]. 计算机应用与软件, 2011, 28(8): 38-39, 75. Ni Xiaojun, Jiang Xiaofeng, Ge Liang, et al. An adaptive simplification algorithm for points cloud data with feature reservation[J]. Computer Applications and Software, 2011, 28(8): 38-39, 75.
Outlines

/